

SVT: 1ère Année BAC

Semestre 2 Devoir 1 Modèle 1

Professeur: Mr BAHSINA Najib

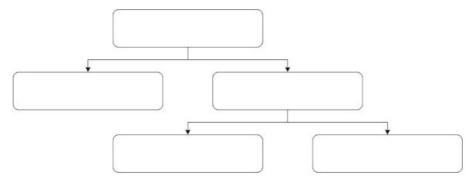
I- Restitution des connaissances (8 pts)

1-1/ Exercie 1 (1,5 pts)

Répondre par "Vrai" ou "Faux" :

a- La perméabilité est différentielle si la membrane laisse passer certaines substances dissoutes, d'autres non : _____

b- La membrane cellulosique ne peut pas résister à une entrée excessive d'eau, elle peut s'éclater : _____


c- La membrane plasmique est une mosaïque à cause de l'hétérogénéité de sa structure :

I- Restitution des connaissances (8 pts)

1-2/ Exercie 2 (1,5 pts)

Compléter le schéma ci-dessous par les termes suivants :

perméabilité - turgescence - plasmolyse - diffusion - osmose

I- Restitution des connaissances (8 pts)

1-3/ Exercie 3 (3 pts)

Pour chaque item, relever la ou les bonnes réponses :

A- Les lipides simples sont constitués d' :

- 1. oses.
- 2. acides aminés.
- 3. acides gras.
- 4. acides gras et de glycérol.

B- Le glucose appartient à la famille des :

2.	pentoses.
3.	osides.
4.	dipeptides.
C- I	Le glycogène et l'amidon sont des polymères :
1.	de glucose.
2.	de galactose.
3.	de fructose.
4.	constitués de molécules de maltose.
D- 1	Le saccharose est:
1.	un sucre réducteur.
2.	constitué de glucose et de fructose.
3.	le constituant de base de l'amidon.
4.	constitué de deux molécules de galactose.
E- I	Les acides aminés sont les molécules élémentaires :
1.	des lipides.
2.	des protéines.
3.	de l'amidon.
4.	des tripeptides.
F- I	Dans quel cas une molécule chlorophyllienne va-t-elle libérer un électron ?
1.	Lorsqu'elle sera excitée par des photons.
2.	En présence d'oxygène.
3.	En présence d'eau.
4.	En présence de dioxyde de carbone.
I-]	Restitution des connaissances (8 pts)
1-4	/ Exercie 4 (2 pts)
Plac	cer les évènements suivants en ordre chronologique :
•	Oxydation d'une molécule d'eau (H_2O) et Formation de l'ATP :
•	Le dioxyde de carbone (CO_2) est fixé par le RudiP :
•	Début de la phase obscure :
•	Le APG est converti en G3P :
•	La chlorophylle est activée :
•	Formation d'une molécule de sucre à six (6) carbones, très instable :
•	Le NADP capte l'hydrogène et l'oxygène est libéré :
•	Fin de la phase claire :
•	Formation du $NADPH_2$:
•	Formation du APG, un sucre composé de trois atomes de carbones :

1. oses.

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-1/ Exercice 5 (4 pts)

On laisse séjourner des cellules de pétales colorées de canna dans des solutions d'urée (CH_4N_2O) de concentrations différentes, à une température de 25°C.

- Solution n°1=12g/l
- Solution n°2=13,5g/l
- Solution n°3=15g/l

On monte ensuite ces cellules entre lame et lamelle dans la solution où elles ont séjourné et on les observe au microscope, les pétales ayant une coloration rouge.

On a:

- dans la solution n°l : vacuole très développée, occupant toute la surface de la cellule, décoloration rose.
- dans la solution n°2 : vacuole plus petite et plus colorée.
- dans la solution n°3 : vacuole très rétractée, rouge très foncée et décollement de la membrane cytoplasmique.

$$C=12$$
 ; $N=14$; $H=1$; $O=16$; $Na=23$; $Cl=35,5$

- 1. Représenter schématiquement une cellule de la préparation de la solution n° : 3 , et annoter soigneusement.
- 2. Interpréter chacun de ces résultats.
- 3. Calculer la pression osmotique du contenu cellulaire.

$$C=12 \; ; \; N=14 \; ; \; H=1 \; ; \; O=16 \; ; \; Na=23 \; ; \; Cl=35,5$$

4. Quelle est la concentration exprimée en g/l d'une solution de NaCI qu'il faudra utiliser pour obtenir sur les cellules de canna les mêmes phénomènes observés dans la solution n°1 d'urée ?

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-2/ Exercice 6 (3 pts)

Acides gras	Formule semi-développée
Acide palmitique	CH3-(CH2)14-COOH
Acide stéarique	CH3-(CH2)16-COOH
Acide oléique	CH3-(CH2)7-CH=CH-(CH2)7-COOH
Acide linoléique	CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-COOH

- 1. Qu'est ce qui confère aux acides gras leur caractère acide?
- 2. La formule générale de l'acide gras est R-COOH, entourer en rouge les-radicaux R de ces acides.
- 3. Donner la formule brute de chaque acide gras sous forme de $C_xH_yO_z$.

4. À partir de ces exemples d'acides gras, distinguez les acides gras saturés des insaturés

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-3/ Exercice 7 (5 pts)

Des algues chlorophylliennes sont mises en suspension dans l'eau additionnée de dioxyde de carbone.

On prépare deux suspensions A et B qui diffèrent par la proportion des molécules d'eau comportant l'isotope ^{18}O , ainsi que par la proportion des molécules de dioxyde de carbone comportant ce même isotope.

Les suspensions A et B sont composées à la lumière.

Le dioxygène produit par les algues est recueilli et la proportion des molécules de dioxygène comportant ^{18}O est déterminée :

	Proportion en ¹⁸ O des molécules (en %)			
	Εαυ	CO ₂	O ₂	
Suspension A	0,85	0,20	0,84	
Suspension B	0,20	0,68	0,20	

- 1. Analyser les résultats de façon à déterminer l'origine de dioxygène dégagé lors de la photosynthèse.
- 2. Écrire l'équation-bilan oxydoréduction permettant d'obtenir un dégagement de dioxygène. Préciser s'il s'agit d'une oxydation ou d'une réduction.

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-3/ Exercice 7 (5 pts)

Des expériences sont réalisées à partir de fragments de chloroplastes séparés en deux fractions :

- une fraction constituée uniquement de thylakoïdes exposés à la lumière ;
- $\bullet\,$ une fraction liquide provenant du stroma, laissée à l'obscurité et additionnée de dioxyde de carbone marqué au ^{14}C :

	Conditions expérimentales	Quantité de ¹⁴ CO ₂ fixé dans le stroma mesurée en coups par minute	
1	Stroma laissé à l'obscurité	4000	
2	Stroma laissé à l'obscurité + ATP	43000	
3	Stroma laissé à l'obscurité et thylakoïdes ayant séjourné à la lumière puis placés à l'obscurité.	96000	
4	Thylakoïdes ayant séjournés à la lumière puis placés à l'obscurité.	0	
5	Stroma laissé à l'obscurité + ATP + RH ₂	95000	

3. Que permet de mesurer la quantité de CO_2 fixé ?

- 4. Déduire de l'analyse des résultats le rôle des thylakoïdes et celui du stroma.
- 5. Préciser le rôle de la lumière dans le fonctionnement du chloroplaste.