Mathématiques : 2Bac SPC-SVT-Agro-STE-STM

Semestre 1 Devoir 2 Modèle 1

 

 

Professeur : Mr CHEDDADI Haitam

 

I- Exercice 1

 

Soit f la fonction définie par fx=x-2x+2.

Soit Cf la courbe représentative de la fonction f dans un repère orthonormé O,i,j.

  1. Déterminer Df et calculer limx+fx.
  1. Étudier les branches infinies de la courbe Cf.
  1. Étudier la position relative de la courbe Cf et la droite Δ d’équation Δ:y=x.
  1. Étudier la dérivabilité de la fonction f à droite en 0.
  1. Calculer f'x pour tout x]0,+[.
  1. Dresser le tableau de variation de la fonction f.
  1. Construire Δ et Cf.

On considère la suite un définie par un+1=13un+n-2u0=1n.

  1. Montrer par récurrence que un>1 n.
  1. Montrer que un est décroissante, en déduire qu’elle est convergente.
  1. Calculer la limite de la suite un.

 

II- Exercice 2

 

On considère la suite un définie par un+1=13un+n-2u0=1n.

  1. Calculer u1u2 et u3.
  1. Démontrer que pour tout entier naturel n4, on a un0.
  1. En déduire que pour tout entier naturel n5, on a unn-3.
  1. En déduire la limite de la suite un.

On définit la suite vn par vn=-2un+3n-212 n

  1. Démontrer que la suite vn est une suite géométrique dont on donnera la raison et le premier terme.
  1. En déduire que un=25413n+32n-214 n

Soit la somme Sn définie par : Sn=u0+u1+u2+.....un n.

  1. Déterminer l’expression de Sn en fonction de n.