Mathématiques : 1ère Année Collège
Séance 2 (Nombres en écriture Fractionnaire)
Professeur : Mr BENGHANI Youssef
Sommaire
I- Vocabulaire
1-1/ Écriture fractionnaire
1-2/ Fraction
II- Égalité des fractions
2-1/ Propriété
2-2/ Transformer une écriture fractionnaire en une fraction
2-3/ Simplification d’une fraction
III- Comparaison de deux fractions
3-1/ Les deux fractions ont le même numérateur : (Règle 1)
3-2/ Les deux fractions ont le même dénominateur : (Règle 2)
3-3/ Comparer une fraction par rapport à 1
3-4/ N’ayant ni le même dénominateur ni le même numérateur
IV- Exercices
4-1/ Exercice 1
4-2/ Exercice 2
4-3/ Exercice 3
4-4/ Exercice 4
4-5/ Exercice 5
4-6/ Exercice 6
I- Vocabulaire
Soient a et b deux nombres, avec b non nul
Le quotient de a par b se note ou en écriture fractionnaire
1-1/ Écriture fractionnaire
L’écriture fractionnaire est le quotient d’un nombre décimal a par un nombre décimal non nul b notée:
Exemple
1-2/ Fraction
La fraction est le quotient d’un nombre entier a par un nombre entier non nul b notée:
Exemple
II- Égalité des fractions
2-1/ Propriété
Si on multiplie (ou divise) le numérateur et le dénominateur d’une fraction par un même nombre non nul, on obtient une fraction égale.
On considère trois nombres décimaux k et b avec et
Exemple
2-2/ Transformer une écriture fractionnaire en une fraction
Pour transformer une écriture fractionnaire en une fraction on multiplie le numérateur et le dénominateur par : 10 ou 100 ou 1000 ou ….
Exemple
2-3/ Simplification d’une fraction
Simplifier une fraction, c’est l’écrire avec de plus petits numérateur et dénominateur entiers possibles, on dit alors qu’elle est irréductible.
Exemple
III- Comparaison de deux fractions
3-1/ Les deux fractions ont le même numérateur : (Règle 1)
Si deux fractions ont le même numérateur, la plus grande est celle qui a le dénominateur le plus petit.
Exemple
3-2/ Les deux fractions ont le même dénominateur : (Règle 2)
Si deux fractions ont le même dénominateur, la plus grande est celle qui a le plus grand numérateur.
Exemple
III- Comparaison de deux fractions
3-3/ Comparer une fraction par rapport à 1
Une fraction, dont le numérateur est plus petit que le dénominateur, est plus petite que 1.
Une fraction, dont le numérateur est plus grand que le dénominateur, est plus grande que 1.
Exemple
3-4/ N’ayant ni le même dénominateur ni le même numérateur
Pour comparer deux nombres en écriture fractionnaire n’ayant ni le même dénominateur ni le même numérateur, on les réduit au même dénominateur puis on applique la règle 2
Exemple
IV- Exercices
4-1/ Exercice 1
Compléter :
IV- Exercices
4-2/ Exercice 2
Dans chacun des cas suivants, trouver la fraction la plus grande:
IV- Exercices
4-3/ Exercice 3
Remplacer les pointillés par le symbole qui convient : < ou > ou =
IV- Exercices
4-4/ Exercice 4
Réduire les fractions suivantes :
IV- Exercices
4-5/ Exercice 5
Dans chacune des lignes, barrer le nombre différent des autres :
IV- Exercices
4-6/ Exercice 6
- Ranger dans un ordre croissant :
- Ranger dans un ordre décroissant :