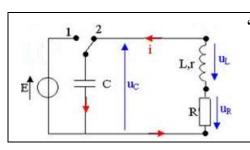
التنبنبات الحرة في دارة RLC متوالية - RLC série متوالية - Les oscillations libres dans un circuit RLC série



بعد شحن المكثف كلياً، نضع قاطع التيار K في الموضع (2) ، فنحصل على دارة RLC متو الية ، يُفرغ المكثف في الوشيعة . بعد انعدام التيار في الدارة فإن الوشيعة تفرغ في المكثف : بين الوشيعة و المكثف تحدث تبادلات طاقية عبر الموصل الاومي

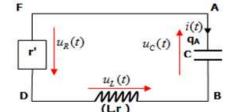
يؤدي تفريغ مكثف مشحون في وشيعة الدارة RLC المتوالية إلى ظهور ذبذبات حرة و مخمدة ذبذبات : التوتر يتأرجح بين قيمة موجبة و قيمة سالبة

حرة : غياب مولد في الدارة يرغمها على التنبذب

مخمدة : الوسع يتناقص مع الزمن بسبب ضياع الطاقة الكهربائية في الموصل الاومي

2- الذبذبات الحرة في دارة RLC

1_2_ المعادلة التفاضلية نعتبر الدارة التالبة:



$$u_L(t) + u_R(t) + u_C(t) = 0$$
: حسب قانون إضافية التوترات بين A و F و نكتب (1)

$$i(t) = C \frac{du_C(t)}{dt}$$
 g $u_L(t) = ri(t) + L \frac{di(t)}{dt}$ g $u_R(t) = r'i(t)$:

: (1) نعوض في المعادلة ي
$$u_L(t) = r.C \frac{du_C}{dt} + L.C \frac{d^2u_C}{dt^2}$$
 و $u_R(t) = r'.C \frac{di}{dt}$

$$L.C$$
 فنسم على $R = r + r'$ نضع $L.C \frac{d^2 u_C}{dt^2} + (r + r')C \frac{du_C}{dt} + u_C = 0$

$$u_C(t)$$
 قتصبح المعادلة التي يحققها التوتر $\frac{d^2u_C}{dt^2} + \frac{R}{L}\frac{du_C}{dt} + \frac{1}{L.C}u_C = 0$: قتصبح المعادلة التي يحققها التوتر

بين مربطي المكثف

" يعبر المقدار $\frac{R}{L} \frac{du_C}{dt}$ عن ظاهرة خمود الذبذبات ، و يحدد حسب قيم R ، نظام هذه الذبذبات R

2-2: أنظمة الذبذبات الحرة

<i>R</i> كبيرة جدا	<i>R</i> حرجة	R صغيرة جدا	R=0	
نظام لا دوري	نظام حرج	نظام شبه دوري	نظام دوري (مثالي)	
R كبيرة جدا ؛ تزول التنبذبات نظرا لوجود خمود مهـــــــــم	في الذبذبات الحرة توجد قيمة معينة للمقاومة R ، نرمز لهل ب R_C ، مقاومة حرجة و هي مقاومة تفصل بين النظام شبه الدوري و النظام لا دوري و يسمى النظام في هذه الحالة حرجا في هذه الحالة يعود التوتر $u_C(t)$ الى الصفر بسرعة و دون تذبذب تتعلق الصفر u_C . C C C	R صغيرة ، نحصل على ذبذبات يتناقص وسعها تدريجيا مع الزمن	R منعدمة ، نحصل على ذبذبات وسعها يبقى تابثا مع الزمن تسمى هذه الدارة بالمثالية: الدارة بالمثالية LC لاستحالة تحقيقها تجريبيا ، لكون أن الوشيعات تتوفر على مقاومة داخلية	
	E 0 τ	uc(V)	uc(V) 3 2 1 -1 -2 -3 t(ms)	
حسب R المقاومة الاجمالية للدارة يمكن الحصول				

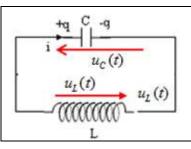
3- الذبذبات غير المخمدة في دارة مثالية LC:

$u_{ m C}(t)$ المعادلة التفاضلية التى يحققها التوتر $u_{ m C}(t)$

 $u_C(t) + u_I(t) = 0$: سب قانون إضافية التوترات ، نكتب

$$u_L(t) = L.C \frac{d^2 u_C}{dt^2}$$
 : في $i = C \frac{du_C}{dt}$ و $u_L(t) = L \frac{di}{dt}$

$$LC\frac{d^2u_C}{dt^2} + u_C = 0$$
 : نعوض فنجد



 $\frac{d^2 u_C}{dt^2} + \frac{1}{LC} u_C = 0$: \dot{q} LC المعادلة التفاضلية التي يحققها التوتر $u_c(t)$ خلال النبذبات الكهربائية الحرة غير المخمدة لدارة

2-3: حل المعادلة التفاضلية

هذه المعادلة التفاضلية ، معادلة خطية من الدرجة الثانية ، حلها جيبي على شكل : $u_{C}(t) = U m C o s (\frac{2\pi}{T_{c}} t + \varphi)$ حيث

(V) وسع الذبذبات بUm *

.
$$(rad)$$
 ب $(t=0)$ الطور في اللحظة (rad) ب (rad) ب الطور عند أصل التواريخ $(\frac{2\pi}{T_0}t+\varphi)$ *

(s) الدور الخاص للذبذبات ب T_0 :

 $u_C(t) = UmCos(\omega_0 t + \varphi)$: نصع ω_0 النبض الخاص الذبذبات ب ω_0 النبض الخاص الذبذبات ب ω_0 النبض الخاص الذبذبات ب ω_0 علم النبض الخاص الذبذبات ب ω_0 النبض الخاص الذبك الذبك الخاص الذبك الخاص الذبك الذبك الذبك الذبك الذبك الخاص الذبك ال

:Um و φ تحدید

تحدد قيم φ و Um ، بالشروط البدئية

مثال 1: * المكثف مشحونا كليا و بالتالى: Um=E.

$$u_C(t=0)=E$$
 : لاينا $t=0$ * عند

arphi=0 اِذن $\cos arphi=rac{E}{Um}\succ 0$: أي أن $u_{C}(0)=UmCosarphi=E$

في حالة حصولنا على قيمتين مختلفتين لـ ϕ يتم اختيار القيمة المناسبة بناءا

على اشارة
$$i(t)=C\,rac{du_C}{dt}=-rac{2\pi}{T_0}C.UmSin(rac{2\pi}{T_0}t+arphi)$$
 في

باعتبار أن هاتين الدالتين متصلتين كيفما كانت t .

: أي أن $u_C(t) = UmCos(\frac{2\pi}{T}t + \varphi)$

$$\frac{d^2 u_C}{dt^2} = -(\frac{2\pi}{T_0})^2 u_C$$

$$(\frac{2\pi}{T_c})^2 . u_C + \frac{1}{LC} u_C(t) = 0$$

و بالنالي :
$$\left(\frac{2\pi}{T_0}\right)^2 = \frac{1}{LC}$$
 و منه :

$$T_0 = 2\pi \sqrt{L.C}$$

$$u_C(t) = E \cos(\frac{2\pi}{T_0}t)$$

· ·	
i(t) تعبير شدة التيار	q(t) تعبير الشحنة
$i(t) = C \frac{du_C}{dt} = -\frac{2\pi}{T_0} C.UmSin(\frac{2\pi}{T_0}t + \varphi)$	$q(t) = C.u_C(t) = CUm\cos\left(\frac{2\pi}{T_0}t + \varphi\right)$
$q_{_{m}}rac{2\pi}{T_{_{0}}}= ext{Im}$ فان $ extit{CUm}=q_{_{m}}$ بماان	$CUm = q_m$ مع

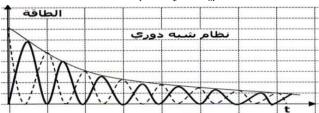
 $[C] = \frac{[I] \cdot [t]}{[U]} \quad \text{o} \quad [L] = \frac{[U]}{[I]} [t] \quad \text{and} \quad$ ملحوظة من خلال معادلة الأبعاد نتحقق ان وحدة $T_0 = \left([L].[C] \right)^{1/2}$ هي الثانية.

أي : $[t] = T_0 = T_0 = T_0$ و هكذا $T_0 = T_0 = T_0$ و هكذا وحدته هي الثانية .

4_ انتقال الطاقة بين المكثف و الوشيع

الطاقة في الدارة RLC المتوالية

خلال در اسة تجريبية لدارة RLC متوالية حيث المقاومة نعاین بو اسطة جهاز ملائم ، منحنیات تغیرات $R \neq 0$ الطاقة E_m و E_t و الطاقة الزمن E_t

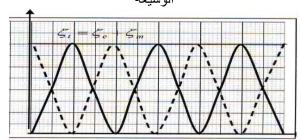


المخزونة في الدارة هي في كل لحظة مجموع الطاقة الكهربائية في المكثف و الطاقة المغنطيسية في الوشيعة لنبين ان الطاقة غير تابثة في هذه الدارة

$$E_{t} = \frac{1}{2}C.u_{C}^{2} + \frac{1}{2}L.i^{2} \cdot E_{t} = E_{e} + E_{m}$$

$$\frac{dE}{dt} = \frac{1}{2} \cdot C \cdot 2 \cdot U_C(t) \cdot \frac{dU_C}{dt} + \frac{1}{2} \cdot L \cdot 2 \cdot i(t) \cdot \frac{di(t)}{dt}$$

الطاقة الكلية المثالية الطاقة الكلية المخزونة في الدارة LC هي في كل لحظة الطاقة الكلية المخزونة في الدارة مجموع الطاقة الكهربائية في المكثف و الطاقة المغنطيسية في



$$E_{t} = E_{e} + E_{m}$$
 $E_{t} = \frac{1}{2}C.u_{C}^{2} + \frac{1}{2}L.i^{2}$

$$\frac{dE}{dt} = \frac{1}{2} \cdot C \cdot 2 \cdot U_C(t) \cdot \frac{dU_C}{dt} + \frac{1}{2} \cdot L \cdot 2 \cdot i(t) \cdot \frac{di(t)}{dt}$$

$$i(t)=C.\frac{dv_C}{dt} \stackrel{\text{Lo}}{=} \frac{d}{dt} = C.U_C(t).\frac{dv_C}{dt} + L.i(t).\frac{dv_C}{dt}$$

$$\frac{dE}{dt} = U_C(t).C.\frac{dv_C}{dt} + L.C.\frac{dv_C}{dt}.\frac{di(t)}{dt}$$

$$\frac{dE}{dt} = (U_C(t).+L..\frac{di(t)}{dt}).C.\frac{dv_C}{dt}$$

$$\frac{dE}{dt} = (U_C(t).+L.C\frac{d^2v_C}{dt^2}).C.\frac{dv_C}{dt}$$

$$L.C\frac{d^2v_C}{dt^2} + (r+r')C\frac{dv_C}{dt} + v_C = 0$$

$$L.C\frac{d^2v_C}{dt^2} + v_C = R.C\frac{dv_C}{dt} = -R.i(t)$$

$$\frac{dE}{dt} = (R.i(t)).C.\frac{dv_C}{dt} - R.i^2(t)$$

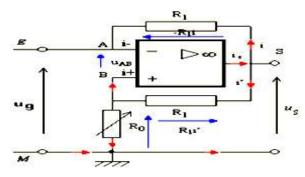
فان $0
eq rac{dE}{dt}$ اي الطاقة الاجماية غير تابثة

$$\begin{split} &\mathrm{i}(t) = \mathrm{C}.\frac{dU_C}{dt} \succeq_{\Delta} \\ &\frac{dE}{dt} = .C.U_C(t).\frac{dU_C}{dt} + L.\,\mathrm{i}(t).\frac{dU_C}{dt} : \mathrm{i}(t) \\ &\frac{dE}{dt} = U_C(t).C.\frac{dU_C}{dt} + L.\,\mathrm{C}.\frac{dU_C}{dt} \cdot \frac{d\mathrm{i}(t)}{dt} \\ &\frac{dE}{dt} = (U_C(t). + L.\frac{d\mathrm{i}(t)}{dt}).C.\frac{dU_C}{dt} \\ &\mathrm{i}(t) = \frac{dE}{dt} = (U_C(t). + L.C\frac{d^2U_C}{dt^2}).C.\frac{dU_C}{dt} \\ &\mathrm{i}(t) = \frac{dE}{dt} = 0 \quad \mathrm{i}(t) = \frac{d^2U_C}{dt^2} + U_C = 0 \\ &\mathrm{i}(t) = 0 \end{split}$$
 $\mathrm{i}(t) = \mathrm{i}(t) \cdot \mathrm{i}(t$

تكون الطاقة الكلية لدارة مثالية LC ثابتة خلال الزمن و تساوي الطاقة البدئية المخزونة في المكثف. - خلال الذبذبات غير المخمدة تتحول الطاقة الكهربائية في المكثف إلى طاقة مغنطيسية في الوشيعة و العكس صحيح.

5- صيانة الذبذبات

1-5: مولد الصيانة



$$U_{AM} = U_{AS} + U_{SB} + U_{BM}$$

$$U_{AM} = -R_{1}.i + R_{1}.i' + R_{0}.i'$$

$$(1) \ U_{AM} = R_{1}(i'-i) + R_{0}.i'$$

$$U_{AM} = U_{AB} + U_{BM}$$

$$(2) \ U_{AM} = 0 + R_{0}.i'$$

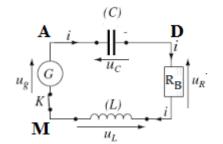
$$i' : i = 0 + R_{0}.i'$$

i=i' : أي أن $R_{_{\mathrm{I}}}(i'-i)=0$ نجد : $R_{_{\mathrm{I}}}(i'-i)=0$ ، أي أن

 $u_{\,G}\,=\,R_{\,0}\,.i$. التوتر بين مربطي المولد $_{
m G}$ يتناسب إطرادا مع شدة التيار $_{
m G}$

2-5: دراسة المتذبذب

 $u_{AM}=u_{AD}+u_{DM}$: غي كل لحظة يمكن كتابة



$$L\frac{di}{dt}+\left(R_{B}-R_{0}\right)i+u_{C}=0$$
 : أي أن
$$R_{0}i=R_{B}i+L\frac{di}{dt}+\frac{q}{C}$$

 $i = \frac{dq}{dt} = C \frac{du_C}{dt}$: أي:

. المعادلة التفاضلية للمتذبذب $\frac{d^2u_C}{dt^2} + \frac{(R_B-R_0)}{LC}C\frac{du_C}{dt} + \frac{1}{LC}u_C = 0$

. $R_{\scriptscriptstyle B}=R_{\scriptscriptstyle 0}$ أي $R_{\scriptscriptstyle B}-R_{\scriptscriptstyle 0}=0$ للحصول على تذبذبات مصانة يجب أن يكزن

و بالتالي : و هي المعادلة التفاضلية المميزة للمتذبذب (L,C) ذي مقاومة مهملة. و بالتالي : $\frac{d^2 u_C}{dt^2} + \frac{1}{LC}u_C = 0$

لصيانة التذبذبات يجب تزويد الدارة بطاقة كهربائية تعوض الطاقة المبددة بمفعول جول في المقاومة R. نستعمل ثنائي قطب يتصرف كمقاومة سالية

${f C}$. ${f G}$ عاينة التوتر بين مربطي مكثف الدارة (${f L},{f C}$) يوجد بها المولد

تجربة: في التركيب التجريبي السابق ، نعاين التوتر u_c بين مربطي المكثف على شاشة راسم التنبذب ، فنلاحظ:

