المادة: الفيزياء والكيمياء	فرض محروس رقم1	الثانوية التأهيلية وادي الذهب
مدة الانجاز ساعتين	تاريخ الانجاز11-06-2013	الثانية باك علوم فيزيائية

الكيمياء : (7 ن)

ندرس التفاعل بين فلز المغنيزيوم $\operatorname{Mg}_{(S)}$ ومحلول حمض الكلوريدريك $(H_3 O_{(aq}^+ + C \ell_{(aq}^-) + C \ell_{(aq}^-) + C \ell_{(aq)}^-)$. $Mg_{(S)}/Mg_{(aq)}^{2+}$ و $H_3 O_{(aq}^+/H_{2(g)}^+)$.

:(ن1) عادلة الحصيلة التالية (1 مردوجة ، توصل الى المعادلة الحصيلة التالية -1 $Mg_{(s)}+2H_3O_{(aq)}^+\to Mg_{(aq)}^{2+}+H_{2(g)}+2H_2O_{(\ell)}$

حمض V=50mL من محلول حمض ، لدراسة حركية هذا التفاعل ، ندخل في حوجلة عند اللحظة t=0 ، حجما V=50mL من محلول حمض الكلوريدريك تركيزه $C=0.5mo\ell$. $C=0.5mo\ell$. نقيس قيم الكلوريدريك تركيزه الهيدروجين الناتج بواسطة مانومتر متصل بالحوجلة بواسطة أنبوب مطاطي . يشغل الغاز حجما ثابتا P_{H_2} عند درجة الحرارة ثابتة T ، ندون جدول نتائج القياس المحصل عليه في الجدول التالي

t(s)	0	30	60	90	120	150	180	210	240	270	300	330
$P_{H_2}(hPa)$	0	14	27	38	47	55	62	69	74	78	80	80

- (ن $n_i(H_3O^+)$ و $n_i(Mg)$: كميتي المادة البدئيتين ، mmo ℓ أحسب بالوحدة -2.1
 - 2.2- بالاستعانة بالجدول الوصفى لهذا التفاعل:

أ- احسب تقدم الأقصى x_{max} ، ثم حدد من جدول القياسات قيمة الضغط القصوى P_{max} للغاز داخل الحوجلة (1,5).

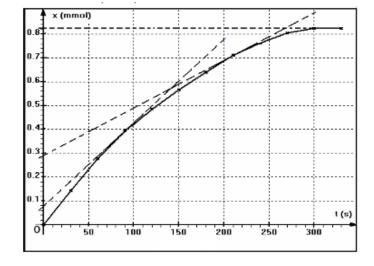
ب- جدّ العلاقَة بين التقدم x و $n(H_2)$ كمية مادة ثنائي الهيدروجين عند اللحظة x و x_{max} و x_{max}

(
$$\circ 1$$
) $x = \frac{x_{max}}{P_{max}} . P_{H_2} = 1,03.10^{-2} P_{H_2}$

. hPa و P_{H_2} و $mmo\ell$ ب x : حيث

3.2- يمثل المنحني في الشكل أسفله

. t تغيرات التقدِم x بدلالة الزمن

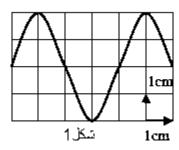

أ- عين مبيانيا السرعة الحجمية للتفاعل (ن1). $t_2=210s$ و $t_1=90s$ بند كل من اللحظتين $t_{1/2}$ زمن نصف التفاعل ،

ثم عين قيمته مبيانيا . (1ن)

نُعطي معادلة الحالة للغازات الكاملة :

 P_{H_2} . $V = n(H_2)$. R. T

 $M(Mg) = 24,3g.\,mo\ell^{-1}$: الكتلة المولية



الفيزياء:

تمرین1:(6نقط)

- 1- انتشار موجة ميكانيكية .
- 1.1- ما الفرق بين الموجة الميكانيكية الطولية والمستعرضة(0,5)ن)
- يمثل الشكل جانبة مظهر الحبل عند اللحظة $t_1=20ms$ علما أن المنبع بدأ حركته عند اللحظة t=0 .
 - أ- حدد قيمة طول الموجة و استنتج سرعة انتشارها وترددها . (1ن)

(0.7,5). $t_2 = 30ms$ ب- مثل مظهر الحبل عند اللحظة

2- انتشار موجة فوق صوتية في الماء.

نضع باعثا E وميكروفونين (مستقبلين) R_1 و R_2 لاستقبال الموجات في حوض مائي بحيث يكون الباعث والمستقبلان على نفس الاستقامة شكل1.

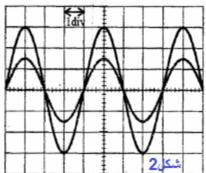
يرسل الباعث موجة صوتية جيبية في الحوض المائي ، بواسطة راسم التذبذب نلاحظ على الشاشة المنحنيان الموافقين للإشارتين الملتقطتين من طرف المستقبلين على توافق في الطور (انظر الشكل 2).

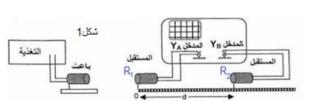
نبعد المستقبل R₂ فنلاحظ أن الاشارتين الملتقطتين من جديد على توافق في الطور عندما تصبح المسافة بين الميكروفونين هي d=3cm .

 $5\mu s/div imes$ نعطي سرعة الكسح

2-2- احسب سرعة انتشار الموجة فوق الصوتية في الماء.(1ن)

3- انتشار الموجات فوق الصوتية في الهواء.

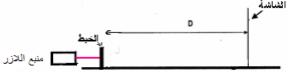

نحتفظ بنفس التركيب التجريبي السابق حيث d=3cm ،ثم نفرغ الحوض من الماء .


نلاحظ أن الاشارتين لا توجدان على توافق في الطور .

1.3- أعط تفسيرا لذلك.(0,5)

3-2- ما المسافّةُ الدنويةُ النّي ْيجب أن نبعد بها المستقبل R₂ عن R₁ لكي تصبح الاشارتين على توافق في الطور .(1ن)

V = 340m/s : نعطي سرعة انتشار الصوت في الهواء



تمرین2:(6 نقط)

<u> الحزء الأول : تحديد قطر خيط صيد السمك .</u>

أصبحت خيوط صيد السمك تصنع من مادة النيلون الّتي تصنع من النيلون كي تتحمل مقاومة السمك المصطاد ، ويكون لها قطر صغير حتى لا ترى من طرفه .

لتحديد قيمة القطر a لأحد الخيوط ، تمت إضاءته بواسطة حزمة ضوئية أحادية اللون منبعثة من جهاز اللازر طول موجتها في الهواء λ يلاحظ على شاشة توجد على مسافة D من الخيط ، تكون بقع ضوئية . عرض البقعة المركزية هو L (أنظر الشكل جانبه).

L=7.5cm ، D=3m ، $\lambda=623.8nm$:معطیات

- (1ن) الشاشة مع التعليل. الرسِم الشكل المحصل عليه على الشاشة مع التعليل. -1
- عن الفرق الزاوي heta ،ثم أوجد تعبير a بدلالة D و L في حالة فرق زاوي heta صغير جدا D عبر بدلالة D عن الفرق الزاوي D ثمر أحسب D أحسب D أحسب D
- عبر ، L'=8cm عبر اللازر بجهاز لازر آخر طول موجته λ' فنحصل على بقعة ضوئية مركزية عرضها λ' عبر λ' عبر λ' بدلالة λ و λ' أحسب قيمة λ' أحسب الما λ'

الحزء الثاني : تحديد قِيمة طول موجة ضوئية في الزجاج

تم ارسال حزمة ضوئية أحادية اللون منبعثة من جهاز لازر على وجه موشور من الزجاج معامل انكساره n=1,5 . - طول الموجة للحزمة الضوئية في الهواء $\Delta_0=655,4nm$.

- . $c = 3.10^8 m. \, s^{-1}$ سرعة انتشار الضوء في الهواء -
- 1- أحسب قيمة v سرعة الانتشار و λ طول موجة الحزمة الضوئية خلال انتشارها في الموشور.(1ن)
- 2-ترد الحزمة الضوئية عُموديا على وجه الموشور (i=0)، أحسب زاوية الانحراف D . أرسم بوضوح مسار الحزمة عبر الموشور موضحا زاوية الانحراف (i=0)

تخصص 1 ن لتنظيم ورقة الإجابة