Corrigé

- 1. La fonction $\phi: x \in \mathbb{R} \mapsto e^{-x} x$ est strictement décroissante sur \mathbb{R} comme somme de fonctions qui le sont et elle est continue, c'est donc une bijection de $\mathbb R$ sur $\phi(\mathbb R)$. Comme $\lim_{t\to -\infty} \phi(t) = +\infty$ et $\lim_{t\to +\infty} \phi(t) = -\infty$, $\phi(\mathbb{R}) = \mathbb{R}$. Par conséquent l'équation $\phi(x) = 0$, c.à.d $e^{-x} = x$, admet une unique
- 2. Recherchons les points critiques de f, fonction de classe \mathcal{C}^{∞} sur \mathbb{R}^2 comme somme de fonctions qui le sont:

$$(S) \left\{ \begin{array}{ll} \frac{\partial f}{\partial x}(x,y) = & 0 \\ \frac{\partial f}{\partial y}(x,y) = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} 2x - 2y - e^{-x} = & 0 \\ -2x + 4y = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} e^{-2y} = & 2y \\ x = & 2y \end{array} \right.$$

D'après la première question, il existe un unique $y_0 \in \mathbb{R}$ tel que $e^{-2y_0} = 2y_0$, donc le système (S) admet une unique solution (x_0, y_0) vérifiant

$$\begin{cases} e^{-x_0} &= x_0 \\ y_0 &= \frac{x_0}{2}. \end{cases}$$

3. D'après la question précédente, (x_0, y_0) est un point critique de f. Nous allons montrer que les dérivées secondes en (x_0, y_0) vérifient les conditions suffisantes pour que f présente un minimum en

$$r = \frac{\partial^2 f}{\partial x^2}(x_0, y_0) = 2 + e^{-x_0} = 2 + x_0, \ s = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = -2, \ t = \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = 4$$

$$rt - s^2 = 4(2 + x_0) - 4 = 4(1 + x_0)$$
or $x_0 = e^{-x_0}$ donc $x_0 > 0$ et $rt - s^2 > 0$

De plus $r = 2 + x_0 > 0$ donc f présente un minimum en (x_0, y_0) .

Exercice 2

- 1. a) Par le calcul, on trouve $A^2 = 3A$.
 - b) Soit λ une valeur propre de A et X un vecteur propre associé.

$$A^{2}X = A\lambda X = \lambda AX = \lambda^{2}X$$

et $A^{2}X = 3AX = 3\lambda X$
donc $\lambda(\lambda - 3)X = 0$

Comme X est un vecteur propre, il est non nul, donc $\lambda(\lambda - 3) = 0$ c.à.d: $\lambda \in \{0, 3\}$.

2. a) Recherchons (s'ils existent) les vecteurs propres associés à 0:

$$A \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = 0 \Leftrightarrow \left\{ \begin{array}{ccc} x + \frac{2}{3}y + 2z = & 0 & (L_1) \\ \frac{3}{2}x + y + 3z = & 0 & (L_2) & \Leftrightarrow x + \frac{2}{3}y + 2z = 0 \\ \frac{1}{2}x + \frac{1}{3}y + z = & 0 & (L_3) \end{array} \right.$$

car $(L_2) = \frac{3}{2}(L_1)$ et $(L_3) = \frac{1}{2}(L_1)$.

Or l'ensemble $E_0 = \{(x, y, z) \in \mathbb{R}^3 : x + \frac{2}{3}y + 2z = 0\}$ est engendré par la famille $\{(2, -3, 0); (2, 0, -1)\}$, qui est libre. Donc, 0 est une valeur propre de A, E_0 est son sous-espace propre associé et $\{(2, -3, 0); (2, 0, -1)\}$ est une base de E_0 .

Recherchons (s'ils existent) les vecteurs propres associés à 3:

$$(A-3I) \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = 0 \Leftrightarrow \left\{ \begin{array}{cccc} -2x + \frac{2}{3}y + 2z = & 0 \; (L_1) \\ \frac{3}{2}x - 2y + 3z = & 0 \; (L_2) \\ \frac{1}{2}x + \frac{1}{3}y - 2z = & 0 \; (L_3) \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{cccc} -2x & +\frac{2}{3}y + 2z = 0 \\ & -\frac{3}{2}y + \frac{9}{2}z = 0 & L_2 \to L_2 + \frac{3}{4}L_1 \\ & \frac{1}{2}y - \frac{3}{2}z = 0 & L_3 \to L_3 + \frac{1}{4}L_1 \end{array} \right.$$

Or dans le dernier système les deux dernières lignes sont proportionnelles ($L_2 = -3L_3$). Ainsi

$$(A - 3I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Leftrightarrow \begin{cases} -2x + \frac{2}{3}y + 2z &= 0 \\ \frac{1}{2}y - \frac{3}{2}z &= 0 \end{cases} \Leftrightarrow \begin{cases} x &= 2z \\ y &= 3z \end{cases}$$

Or, L'ensemble $E_3 = \{(x, y, z) \in \mathbb{R}^3 : x = 2z \text{ et } y = 3z\} = \text{Vect } ((2, 3, 1)), \text{ donc, } 3 \text{ est une valeur}$ propre de A, E_3 est son sous-espace propre associé et $\{(2,3,1)\}$ est une base de E_3 .

b) La somme des dimensions des sous-espaces propres de A est $2+1=3=\dim \mathbb{R}^3$ donc A est diagonalisable.

3. a) On trouve PQ = I. P est donc inversible et $P^{-1} = Q$.

Par le calcul, on trouve PDQ = A. On pourrait se passer du calcul en remarquant que P est la matrice de passage entre la base canonique et une base formée par des vecteurs propres de A, et donc $P^{-1}AP = D$, d'où $PDP^{-1} = A$, c.à.d PDQ = A.

b) Soit $X \in \mathcal{M}_3(\mathbb{R})$ et Y = QXP. Alors

 $AX - XA = 3X \Leftrightarrow (PDQ)X - X(PDQ) = 3X \Leftrightarrow Q((PDQ)X - X(PDQ))P = Q(3X)P \Leftrightarrow$ $(QP)D(QXP) - (QXP)D(QP) = 3(QXP) \Leftrightarrow DY - YD = 3Y.$

4. Soit $Y = \begin{pmatrix} a & b & c \\ d & e & f \\ a & b & i \end{pmatrix}$

$$DY - DY = 3Y \Leftrightarrow \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) - \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = 3 \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right)$$

D'où

$$DY - DY = 3Y \Leftrightarrow \left(\begin{array}{ccc} 0 & 3b & 3c \\ -3d & 0 & 0 \\ -3g & 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 3a & 3b & 3c \\ 3d & 3e & 3f \\ 3g & 3h & 3i \end{array} \right) \Leftrightarrow a = d = e = f = g = h = i = 0$$

Les matrices de $\mathcal{M}_3(\mathbb{R})$ vérifiant DY - YD = 3Y sont de la forme

$$Y = \left(\begin{array}{ccc} 0 & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

d) Les matrices $X \in \mathcal{M}_3(\mathbb{R})$ telles que AX - XA = 3X sont donc de la forme

$$X = P \begin{pmatrix} 0 & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q = bM_1 + cM_2$$

$$M_1 = P \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q = \frac{1}{18} \begin{pmatrix} 6 & -8 & 12 \\ 9 & -12 & 18 \\ 3 & -4 & 6 \end{pmatrix} \text{ et } M_2 = P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q = \frac{1}{18} \begin{pmatrix} 6 & 4 & -24 \\ 9 & 6 & -36 \\ 3 & 2 & -12 \end{pmatrix}$$

 $\{M_1, M_2\}$ est à l'évidence une famille libre, et l'égalité $X = bM_1 + cM_2$ montre que c'est également une famille génératrice de l'espace recherché donc l'ensemble des matrices X de $\mathcal{M}_3(\mathbb{R})$ vérifiant AX - XA = 3X, est un espace vectoriel de dimension 2 sur IR.

Exercice 3

1. La fonction f est positive sur \mathbb{R} , continue sur \mathbb{R}^* et on remarque qu'elle est continue en 0. Dans ces conditions f sera une densité si et seulement si l'intégrale $I = \int_{-\infty}^{+\infty} f(t) dt$ converge et vaut 1.

Or f est nulle sur \mathbb{R}_{-}^* , donc $I = \int_0^{+\infty} f(t) dt$. Pour tout $x \ge 0$, $\int_0^x f(t) dt = \left[-e^{\frac{-t^2}{2}} \right]_0^x = 1 - e^{\frac{-x^2}{2}}$.

Comme $\lim_{x\to +\infty} e^{\frac{-x^2}{2}} = 0$, on a alors $\lim_{x\to +\infty} \int_0^x f(t) dt = 1$. Ainsi I = 1. Conclusion: La fonction f est

2. Déterminons la fonction de répartition F de X.

Pour tout x < 0, $F(x) = \int_{-\infty}^{x} f(t) dt = 0$ (car f est nulle sur $]-\infty, x]$). Pour tout $x \ge 0$, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} f(t) dt + \int_{0}^{x} f(t) dt = 0 + 1 - e^{\frac{-x^2}{2}} = 1 - e^{\frac{-x^2}{2}}$. En résumé

$$\begin{cases} F(x) = 0 & \text{si } x < 0. \\ F(x) = 1 - e^{\frac{-x^2}{2}} & \text{si } x \ge 0. \end{cases}$$

Déterminons la fonction de répartition G de $Y = X^2$.

Par définition : $\forall y \in \mathbb{R}$, $G(y) = P(Y \le y)$. Si y < 0, on a G(y) = 0. Si $y \ge 0$, $G(y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F(\sqrt{y}) - F(-\sqrt{y}) = 1 - e^{-\frac{Y}{2}}$.

Ainsi Y admet pour densité la fonction g définie par g(y)=0 si y<0 et $g(y)=\frac{1}{2}e^{-\frac{y}{2}}$ sinon. Y suit donc la loi exponentielle de paramètre $\frac{1}{2}$.

c) Y suit une loi exponentielle de paramètre $\frac{1}{2}$, donc $E(Y) = \frac{1}{\frac{1}{2}} = 2$ et $Var(Y) = \frac{1}{\frac{1}{2}} = 4$.