EXERCICE 1

1. Si
$$j < i$$
, $P(Y = i | X = j) = 0$.
Si $j \ge i$, $P(Y = i | X = j) = C_i^i (\frac{1}{10})^i \left(1 - \frac{1}{10}\right)^{j-i}$.

2 On a

$$P(Y = i) = \sum_{i=0}^{+\infty} P(Y = i | X = j) P(X = j)$$

On sait que

$$\forall j \in \mathbb{N}, \ P(X=j) = \frac{\lambda^j e^{-\lambda}}{j!}$$

Compte tenu de la première question, on obtient

$$P(Y=i) = \sum_{j=i}^{+\infty} C^i_j \left(\frac{1}{10}\right)^i \left(1 - \frac{1}{10}\right)^{j-i} \frac{\lambda^j e^{-\lambda}}{j!} = \left(\frac{\lambda}{10}\right)^i \frac{e^{-\lambda}}{i!} \sum_{j=i}^{+\infty} \left(1 - \frac{1}{10}\right)^{j-i} \frac{\lambda^{j-i}}{(j-i)!}$$

Effectuons dans la somme, le changement d'indice: k = j - i,

$$P(Y=i) = \left(\frac{\lambda}{10}\right)^i \frac{e^{-\lambda}}{i!} \sum_{k=0}^{+\infty} \left(1 - \frac{1}{10}\right)^k \frac{\lambda^k}{k!}$$

Or, on sait que

$$\forall x \in \mathbb{R}, \sum_{k=0}^{+\infty} \frac{x^k}{k!} = e^x;$$

d'où.

$$P(Y=i) = \left(\frac{\lambda}{10}\right)^i \frac{e^{-\lambda} e^{(1-\frac{1}{10})\lambda}}{i!} = \left(\frac{\lambda}{10}\right)^i \frac{e^{\frac{-\lambda}{10}}}{i!}.$$

Y suit donc la loi de Poisson de paramète $\frac{\lambda}{10}$.

EXERCICE 2

1. a) On a: pour tout $P \in \mathbb{R}_2[X]$, $\Phi(P) \in \mathbb{R}_2[X]$. Comme $P \mapsto P(0)$, $P \mapsto P'(1)$ et $P \mapsto P''(2)$ sont linéaires, il est clair que Φ est linéaire.

On a : $\Phi(1) = 1$, $\Phi(X) = X$ et $\Phi(X^2) = 2X + 2X^2$.

La matrice M de Φ par rapport à la base canonique $(1,X,X^2)$ est donc donnée par:

$$M = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{array}\right)$$

on a : $\det M = 2$ donc M est inversible et ϕ est bijectif. En inversant le système triangulaire MV = W on obtient:

$$M^{-1} = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & -1\\ 0 & 0 & \frac{1}{2} \end{array}\right)$$

On a donc : $\Phi^{-1}(aX^2 + bX + c) = \frac{a}{2}X^2 + (b-a)X + c$.

2. La matrice M étant triangulaire, les valeurs propres de M sont ses coefficients diagonaux c.à.d 1 et 2: 1 est une valeur propre double, et comme le sous espace-propre associé contient déjà 1 et X, on en déduit qu'il est égal à $Vect(1,X) = \mathbb{R}_1[X]$. 2 est une valeur propre simple de Φ . On résout le système: (M-2I)V=0 et on obtient que le sous-espace propre associ à 2 est engendré par $2X+X^2$. Ainsi Φ est diagonalisable.

Mathématiques

EXERCICE 3

1. Soit f la fonction: $x \mapsto x - x^2$. On a f'(x) = 1 - 2x. f est donc strictement croissante sur $[0,\frac{1}{2}]$ et pour tout $x \in]0,\frac{1}{2}[$, on a $0=f(0) < f(x) < f(\frac{1}{2})=\frac{1}{4}.$ Comme $u_0 \in]0, \frac{1}{2}[$, on obtient par récurrence: $\forall n \in \mathbb{N}, 0 < u_n < \frac{1}{2}$.

La suite (u_n) est donc minorée. De plus, elle est décroissante car u_{n+1} – $u_n = -u_n^2 \le 0$. D'où sa convergence. Les opérations algébriques sur les suites convergentes montrent que la limite L de la suite (u_n) vérifie $L = L - L^2$, c.à.d L = 0.

- 2. L'égalité $u_n^2 = u_n u_{n+1}$ montre que la série de terme général u_n^2 converge (c'est une série téléscopique) et $\sum_{n=0}^{+\infty} u_n^2 = u_0$.
- 3. On a $\ln\left(\frac{u_{n+1}}{u_n}\right) = \ln(u_{n+1}) \ln(u_n)$. Or $\lim_{n \to +\infty} \ln(u_n) = -\infty$ donc la série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right)$ diverge.

La relation $-\ln\left(\frac{u_{n+1}}{u_n}\right) = -\ln(1-u_n) \sim u_n$ et le théorème de comparaison par équivalence pour les séries à termes positifs assurent que la série terme général u_n est aussi divergente.

4. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_n < \frac{1}{n+1}$: La propriété est vraie pour n=0. Supposons qu'elle le soit pour $n \in \mathbb{N}$. Soit f la fonction: $x \mapsto x - x^2$. f étant strictement croissante sur $[0, \frac{1}{2}]$, on a donc: $u_{n+1} = f(u_n) < f(\frac{1}{n+1}) = \frac{n}{(n+1)^2}$. Or $n(n+2) < n(n+2) + 1 = (n+1)^2$, donc $\frac{n}{(n+1)^2} < \frac{1}{n+2}$ et par suite $u_{n+1} < \frac{1}{n+2}$. La propriété est donc vraie pour tout $n \in \mathbb{N}$. Il en résulte que pour tout $n \in \mathbb{N}^*$, $\frac{(n+1)u_{n+1}}{nu_n} = \frac{n+1}{n} - \frac{(n+1)u_n}{n} > \frac{n+1}{n} - \frac{1}{n} = 1$. D'où la croissance de la suite (nu_n) (notons que $0.u_0 < 1.u_1$). On a aussi $nu_n < \frac{n}{n+1} < 1$ donc la suite (nu_n) est majorée. On en general $u_n = 1$ contra suite $u_n = 1$ conclut que cette suite est convergente. Soit ℓ sa limite.

5. On a $v_n = \ell - nu_n$, donc la suite v_n converge vers 0 et par conséquent la série de terme général $v_n - v_{n+1}$ est convergente.

6. On a $\frac{v_n-v_{n+1}}{v_n}=1-(n+1)u_n$, donc sa limite vaut $1-\ell$. Si $1-\ell\neq 0$, alors $v_n - v_{n+1} \sim (1 - \ell)u_n$ (quand $n \to +\infty$) et les séries $\sum u_n$ et $\sum (v_n - v_{n+1})$ seraient de même nature, ce qui est absurde d'après les questions 3. et 5. Finalement $\ell = 1$.

366