Année	scolaire	:	2022 -	2023

Examen national 2014 1^{ière} session

AGOUZAL 2 BPCF

Exercice 1: (2014 S1) (3pts)

Soit dans l'espace muni d'un repère orthonormé direct $(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$ les points A(0;3;1), B(-1;3;0) et C(0;5;0) et

- (S) la sphère d'équation: $x^2 + y^2 + z^2 4x 5 = 0$
- 1) a) Montrer que : $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} \overrightarrow{j} 2\overrightarrow{k}$ et en déduire que A, B et C sont non alignés.
- b) Montrer que : $2\mathbf{x} \mathbf{y} 2\mathbf{z} + 5 = 0$ est une équation cartésienne du plan (ABC).
- 2) a) Montrer que (S) est de centre $\Omega(2;0;0)$ et de rayon 3
- b) Montrer que le plan (ABC) est tangent à la sphère (S)
- c) Déterminer le triplet de coordonnées du point de tangence H du plan (ABC) et de la sphère (S).

Exercice 2: (2014 S1) (3pts)

- 1) Résoudre dans \mathbb{C} l'équation : $\mathbb{Z}^2 \mathbb{Z}\sqrt{2} + 2 = 0$
- 2) Soit u le nombre complexe tel que: $\mathbf{u} = \frac{\sqrt{2}}{2} + \mathbf{i} \frac{\sqrt{6}}{2}$
- a) Montrer que le module de u est $\sqrt{2}$ que $\arg \mathbf{u} = \frac{\pi}{3} [2\pi]$.
- b) En utilisant la forme trigonométrique du nombre u montrer que **u**⁶ est un nombre réel.
- On considère, Dans le plan rapporté à un repère orthonormé direct $(\mathbf{0}; \overrightarrow{\mathbf{e}_1}; \overrightarrow{\mathbf{e}_2})$ on considère les points A
- et B d'affixes respectives $\mathbf{a} = 4 4\mathbf{i}\sqrt{3}$, $\mathbf{b} = 8$
- 4) Soient z l'affixe du point M du plan et z' l'affixe du point M' image du M par la rotation R de centre O et d'angle $\frac{\pi}{2}$.
- a) exprimer z' en fonction de z.
- b) Vérifier que B est l'image de A par la rotation R et en déduire que le triangle OAB est équilatéral.

Exercice 3: (2014 S1) (3pts)

On considère la suite (U_n) définie par :

$$\mathbf{U_{n+1}} = \frac{1}{2}\mathbf{U_n} + 7 \quad \forall \mathbf{n} \in \mathbb{N} \quad \text{et} \quad \mathbf{U}_0 = 13$$

- 1) Montrer que : $U_n < 14$ $\forall n \in N$
- 2) Soit (V_n) la suite définie par :

$$\mathbf{V_n} = 14 - \mathbf{U_n}$$
 $\forall n \in \mathbf{N}$

- $a-Montrer\ que\ (V_n)\ est\ une\ suite\ géométrique\ de$ raison $\frac{1}{2}\ \ et\ donner\ V_n\ en\ fonction\ de\ n.$
- b En déduire que : $\mathbf{U_n} = 14 \left(\frac{1}{2}\right)^{\mathbf{n}} \quad \forall n \in \mathbb{N}$ puis Calculer $\lim \mathbf{U_n}$
- c Déterminer la plus petite valeur de n pour laquelle $U_n > 13,99$

Exercice 3: (2014 S1) (3pts)

Un sac contient neuf jetons, indiscernables au toucher portant les chiffres suivants : 0; 0; 0; 0; 0; 1; 1; 1; 1; 1) On tire simultanément et au hasard deux jetons du sac

Soit l'événement : A " la somme des deux numéros portés par les deux jetons tirées est égal à 1 " Montrer que $\mathbf{P}(\mathbf{A}) = \frac{5}{\Omega}$

- 2) On considère le jeu suivant : **Said** tire au hasard et en même temps deux jetons du sac et il est considéré gagnant s'il tire deux jetons portant chacun le chiffre 1
- a) Montrer la probabilité de gain de Said est $\frac{1}{6}$
- b) Said a jouer le jeu précédent trois fois de suite, et à chaque fois il remet les deux jetons tirés dans le sac **Quelle est la probabilité** pour que Said gagne exactement deux fois.

Problème : (2014 S1) (8pts)

I) On considère la fonction g définie sur $]0;+\infty[$ par

$$\mathbf{g}(\mathbf{x}) = 1 - \frac{1}{\mathbf{x}^2} + \ln \mathbf{x}$$

1) Montrer que $\mathbf{g}'(\mathbf{x}) = \frac{2}{\mathbf{x}^3} + \frac{1}{\mathbf{x}} \quad \forall \in]0; +\infty[$ et en

déduire que g est croissante sur]0;+∞[

- c Vérifier que g(1) = 0 puis en déduire que : $g(x) \le 0 \ \forall \in [0,1]$ et $g(x) \ge 0 \ \forall \in [1;+\infty[$
- II) On considère la fonction f définie sur]0;+∞[par :

$$\mathbf{f}(\mathbf{x}) = \left(1 + \ln \mathbf{x}\right)^2 + \frac{1}{\mathbf{x}^2}$$

- (C) est la courbe représentative de f dans le repère orthonormé ($\mathbf{O}; \mathbf{i}; \mathbf{j}$) (unité : 1 cm)
- 1) Montrer que $\lim_{x\to 0^+} \mathbf{f}(\mathbf{x}) = +\infty$ et interpréter le

résultat géométriquement.

- 2) a) Calculer $\lim_{x \to +\infty} f(x)$
- b) Montrer que $\lim_{x \to +\infty} \frac{(1 + \ln x)^2}{x} = 0$ (on peut poser

$$\mathbf{t} = \sqrt{\mathbf{x}} \quad \text{puis montrer que } \lim_{\mathbf{x} \to +\infty} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}} = 0$$

- c) Déterminer la branche infinie de (C) au voisinage de $+\infty$
- 3) a Montrer que: $\mathbf{f}'(\mathbf{x}) = \frac{2\mathbf{g}(\mathbf{x})}{\mathbf{x}} \quad \forall \mathbf{x} \in]0; +\infty[$ puis en déduire que est décroissante sur]0,1] et croissante sur $[1; +\infty[$
- b Dresser le tableau des variations de f sur $]0;+\infty[$, puis en déduire que $f(x) \ge 2 \ \forall x \in]0;+\infty[$
- 4) Construire la courbe (C) dans le repère ($\mathbf{O}; \mathbf{i}; \mathbf{j}$). (On admet que la courbe (C) admet un point d'inflexion, qu'on ne demande pas de déterminer).

- 5) On considère les intégrales I et J suivants: $\mathbf{I} = \int_1^{\mathbf{e}} (1 + \ln \mathbf{x}) d\mathbf{x}$ et $\mathbf{J} = \int_1^{\mathbf{e}} (1 + \ln \mathbf{x})^2 d\mathbf{x}$
- a) Montrer que $\mathbf{H}: \mathbf{x} \to \mathbf{x} \ln \mathbf{x}$ est une fonction primitive de $\mathbf{h}: \mathbf{x} \to 1 + \ln \mathbf{x}$ sur $]0; +\infty[$ puis en déduire que $\mathbf{I} = \mathbf{e}$.
- b) En utilisant une intégration par parties, montrer $\mathbf{J} = 2\mathbf{e} 1$
- c) Calculer en cm² l'aire du domaine plan délimité par (C), l'axe des abscisses et les droites d'équations x = 1 et x = e