Lycée : Ibn Zohr - Tanger $2BAC\ PC$

Les suites

P. Hicham ESSAFI 0679084659

Exercice 1: On considère la suite (u_n) définie par : $u_0 = 1$ et $u_{n+1} = \frac{1}{3}u_n + n - 2$ $(\forall n \in \mathbb{N})$

- 1) Calculer u_1 , u_2 et u_3 .
- 2) a) Démontrer que pour tout entier nature l $n \geq 4$, $u_{\scriptscriptstyle n} \geq 0\,.$
 - b) En déduire que pour tout entier nature $n \ge 5$, $u_n \ge n-3$.
 - c) En déduire la limite de la suite (u_n) .
- 3) On définit la suite (v_n) par : $v_n = -2u_n + 3n \frac{21}{2}$ $(\forall n \in \mathbb{N})$.
 - a) Démontrer que la suite (v_n) est une suite géométrique dont on donnera la raison et le premier terme.
 - b) En déduire que : $u_n = \frac{25}{4} \left(\frac{1}{3}\right)^n + \frac{3}{2}n \frac{21}{4} \quad (\forall n \in \mathbb{N})$.
 - c) Soit la somme S_n définie par : $S_n = u_0 + u_1 + \dots + u_n \quad (\forall n \in \mathbb{N})$.

Déterminer l'expression de S_n en fonction de n.

Exercice 2: On considère la suite (u_n) définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{1}{2}u_n + \frac{n}{2} - \frac{3}{2}$ $(\forall n \in \mathbb{N})$.

- 1) Calculer u_1 , u_2 et u_3 .
- 2) Montrer par récurrence que pour tout entier nature $n \ge 3$, $u_{n+1} > u_n$.
- 3) En déduire le sens de variation de la suite (u_n) .
- 4) On définit la suite (v_n) par : $v_n = 0, 1u_n 0, 1n + 0, 5 \quad (\forall n \in \mathbb{N})$.

Démontrer que la suite (v_n) est une suite géométrique de raison 0,5.

- 5) Montrer que, pour tout entier naturel n, $u_n = 10 \times \left(\frac{1}{2}\right)^n + n 5$.
- 6) Déterminer alors la limite de la suite (u_n) .

Exercice 3: On considère la suite (u_n) définie par : $u_0 = 0$ et $u_{n+1} = \sqrt{3u_n + 4}$ $(\forall n \in \mathbb{N})$.

- 1) Montrer par récurrence que : $0 \le u_n \le 4 \quad (\forall n \in \mathbb{N})$.
- 2) Montrer que : $u_{n+1}^2 u_n^2 = -(u_n + 1)(u_n 4) \quad (\forall n \in \mathbb{N}).$
- 3) En déduire que la suite (u_n) est croissante.
- 4) Montrer que la suite (u_n) est converge et déterminer sa limite.

Exercice 4: a et b sont deux réels tels que 0 < a < b. On considère les suites (u_n) et (v_n) définies

par: $u_0 = a$, $v_0 = b$ et pour tout entier naturel n, $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \sqrt{\frac{u_n^2 + v_n^2}{2}}$

- 1) Montrer par récurrence que : $u_n > 0$ et $v_n > 0$ $(\forall n \in \mathbb{N})$.
- 2) Démontrer que : $(\forall n \in \mathbb{N})$ $v_{n+1}^2 u_{n+1}^2 = \left(\frac{u_n v_n}{2}\right)^2$. En déduire que $u_n \le v_n$ $(\forall n \in \mathbb{N})$.

- 3) Démontrer que la suite (u_n) est croissante.
- 4) Comparer v_{n+1}^2 et v_n^2 . En déduire le sens de variation de la suite (v_n) .
- 5) Démontrer que les suites (u_n) et (v_n) sont convergentes.

Exercice 5: On considère les suites (u_n) et (v_n) définies par : $u_0 = 2$, $v_0 = 10$ et pour tout entier naturel n, $u_{n+1} = \frac{2u_n + v_n}{3}$ et $v_{n+1} = \frac{u_n + 3v_n}{4}$

- 1) a) Montrer que pour tout entier naturel n, $v_{n+1} u_{n+1} = \frac{5}{12} (v_n u_n)$.
 - b) Pour tout entier nature n, on pose $w_n = v_n u_n$. Montrer que $w_n = 8\left(\frac{5}{12}\right)^n \ (\forall n \in \mathbb{N})$.
- 2) a) Démontrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
 - b) Déduire que pour tout entier naturel n, $u_n \le 10$ et $v_n \ge 2$.
 - c) En déduire que les suites (u_n) et (v_n) sont convergentes.
- 3) Montrer que les suites (u_n) et (v_n) ont la même limite.
- 4) Montrer que la suite (t_n) définie par $t_n = 3u_n + 4v_n$ est constante.
- 5) En déduire que la limite commune des suites (u_n) et (v_n) est $\frac{46}{7}$.

Exercice 6: On considère la suite (u_n) définie par : $u_1 = \frac{3}{2}$ et $u_{n+1} = \frac{nu_n + 1}{2(n+1)}$ $(\forall n \in \mathbb{N}^*)$

On définit la suite (v_n) par : $v_n = nu_n - 1 \ (\forall n \in \mathbb{N}^*)$.

- 1) Montrer par récurrence que : $u_n > 0 \ (\forall n \in \mathbb{N}^*)$.
- 2) Montrer que la suite (v_n) est géométrique ; préciser sa raison et son premier terme.
- 3) En déduire que, pour tout entier nature $n \ge 1$, on a : $u_n = \frac{1 + (0,5)^n}{n}$.
- 4) Déterminer la limite de la suite (u_n) .
- 5) Justifier que, pour tout entier naturel $n \ge 1$, on a $u_{n+1} u_n = -\frac{1 + (1 + 0.5n)(0.5)^n}{n(n+1)}$.
- 6) En déduire le sens de variation de la suite (u_n) .