Suites numériques

I) Définition, vocabulaires et notations.

Définition : Toute fonction u définie sur l'ensemble IN, ou d'une partie I de IN vers IR est dite suite numérique.

Notation et vocabulaire.

- L'image de n par la suite u est notée u_n au lieu de u(n).
- La suite est notée $(u_n)_{n\in I}$ (ou plus simplement (u_n) sin ∈ IN).
- u_n est un « terme » de la suite, et on l'appelle terme général de la suite.
- Si la suite commence par u_1 , alors u_n est le $n^{\text{ième}}$ terme, ou terme de rang n.
- Si la suite commence par u_0 , u_n est le terme de rang n+1.
- On peut définir une suite par une **formule explicite**, c'est-à-dire par une relation du type : $u_n = f(n)$
- On peut définir une suite par **récurrence**, c'est-à-dire par une relation du type $u_{n+1} = f(u_n)$ ou par d'autres types.

II) Monotonie d'une suite numérique

Soit I une partie de $\mathbb{I}\mathbb{N}$ tel que : $I = \{n \in \mathbb{I}\mathbb{N} \mid n \geq p \mid avec \mid p \in \mathbb{I}\mathbb{N}\}$

Définitions : On dit que la suite $(u_n)_{n\geq p}$ est strictement décroissante, si $(\forall n\geq p)$: $u_{n+1}\leq u_n$. **On** dit que la suite $(u_n)_{n\geq p}$ est strictement croissante, si $(\forall n\geq p)$: $u_{n+1}\geq u_n$.

III) Suite majorée - Suite minorée - Suite bornée

Définitions:

- On dit que la suite $(u_n)_{n \ge p}$ est majorée lorsqu'il existe un réel M tel que $(\forall n \ge p) : u_n \le M$. Le nombre M est alors appelé un majorant de la suite $(u_n)_{n \ge p}$.
- On dit que la suite $(u_n)_{n\geq p}$ est minorée lorsqu'il existe un réel m tel que : $(\forall n\geq p):u_n\geq m$. Le nombre m est alors appelé un minorant de la suite $(u_n)_{n\geq p}$.
- On dit que la suite $(u_n)_{n \ge p}$ est bornée lorsqu'elle est à la fois majorée et minorée.

Remarques:

- Si (u_n) est une suite croissante, alors elle est minorée par son premier terme u_0 .
- Si (u_n) est une suite décroissante, alors elle est majorée par son premier terme u_0 .

IV) Suite arithmétique - Suite géométrique.

	Suite arithmétique	Suite géométrique		
	S'il existe un réel <i>r</i> tel que :	S'il existe un réel q tel que :		
$(u_n)_{n\geq p}$ est une suite	$(\forall n \geq p): u_{n+1} - u_n = r$	$(\forall n \geq p): u_{n+1} = q u_n$		
	(r est appelé raison de la suite)	(q est appelé raison de la suite)		
u_n en fonction de n	$(\forall n \geq p): u_n = u_p + (n-p)r$ $(\forall n \geq p): u_n = u_p \times q^{n-p}$			
Somme des premiers termes d'une suite	$S = \left(\frac{u_p + u_n}{2}\right)(n - p + 1)$	$S = u_p \left(\frac{1 - q^{n-p+1}}{1 - q} \right) \qquad \text{avec } q \neq 1$		

Avec $S = u_p + u_{p+1} + \dots + u_{n-1} + u_n$

Pr: BELKHYR ABDELAZIZ 2019/2020

V) Limite d'une suite numérique .

1) Suites de référence – suite convergente.

Définition: On dit qu'une suite (u_n) est **convergente** vers le réel a lorsque tout intervalle ouvert contenant a contient tous les termes de la suite à partir d'un certain rang. On note alors $\lim_{n \to +\infty} u_n = a$.

- Une suite est dite **divergente** lorsqu'elle n'est pas convergente.
- Des suites **convergentes** vers $\mathbf{0}: \left(\frac{1}{n^p}\right)_{n \in IN^*}$; $\left(\frac{1}{\sqrt{n}}\right)_{n \in IN^*}$ où p est un entier naturel non nul.
- Des suites **divergentes** vers $+\infty$: $(n^p)_{n\geq 0}$; $(\sqrt{n})_{n\geq 0}$ où p est un entier naturel non nul.
- Limite d'une suite **géométrique :**

q	$q \le -1$	-1 < q < 1	q = 1	q > 1
$\lim_{n\to +\infty}q^n$	pas de limite	0	1	+∞

2) Critères de convergence.

Théorème 1 : Soient (u_n) et (v_n) deux suites définies sur IN.

Si, à partir d'un certain rang, $u_n \ge v_n$ et $\lim_{n \to +\infty} v_n = +\infty$ alors $\lim_{n \to +\infty} u_n = +\infty$.

Théorème 2 : Soient (u_n) et (v_n) deux suites définies sur IN.

Si, à partir d'un certain rang, $u_n \le v_n$ et $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

Théorème des gendarmes : Soient (u_n) , (v_n) et (w_n) trois suites définies sur IN.

Si, à partir d'un certain rang, $v_n \le u_n \le w_n$ et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = L$ alors (u_n) est *convergente* et $\lim_{n \to +\infty} u_n = L$.

Théorème des gendarmes : Soient (u_n) et (v_n) deux suites définies sur IN .

Si, à partir d'un certain rang, $|u_n - L| \le v_n$ et $\lim_{n \to +\infty} v_n = 0$ alors (u_n) est **convergente** et $\lim_{n \to +\infty} u_n = L$.

Théorème 3:

- Si une suite croissante est majorée alors elle est convergente.
- Si une suite décroissante est minorée alors elle est convergente.

Remarque : Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite.

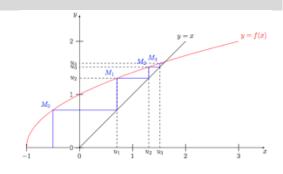
3) Théorème de convergence des suites récurrentes.

Propriété : Soit (u_n) une suite définie par :

$$(\forall n \in IN); u_{n+1} = f(u_n) \quad et \quad u_0 \in I$$

Si f est **continue** sur I, $f(I) \subset I$ et (u_n) est **convergente** alors la limite ℓ de (u_n) est une solution de l'équation f(x) = x

On dit que ℓ est un "point fixe" de la fonction f.



Principe de récurrence :

Pour démontrer par récurrence qu'une proposition P_n est vraie pour tout entier naturel n, on procède en deux étapes, puis on conclut.

- **Première étape :** On vérifie que P_0 est vraie.
- **Deuxième étape :** On suppose que pour un entier naturel n quelconque, la propriété P_n est vraie, et sous cette hypothèse, on démontre que la proposition P_{n+1} est vraie.
- Conclusion: lorsque les deux étapes sont franchies, on conclut que la proposition P_n est vraie pour tout entier naturel n positif.

Pr: BELKHYR ABDELAZIZ 2019/2020