

Matière : Physique-chimie

Exercice 1:

On considère le circuit électrique de la figue suivante :

Les tensions entre certains points de ce circuit sont :

$$U_{PN} = 10.0V ; U_{AE} = 6.0; U_{BE} = 2.0V$$

Calculer les tensions U_{DE} ; U_{AB} ; U_{DF} ; U_{EF} ; U_{DE} et U_{BC} .

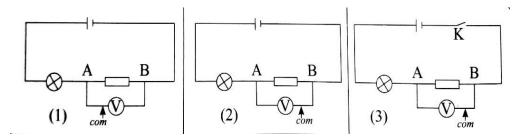
Exercice 2:

Répondre par vrai au faux en justifiant :

- 1- Un voltmètre est toujours branché en dérivation avec le conducteur dont la tension est à mesurer.
- 2- La mesure d'une tension est toujours positive.
- 3- Le voltmètre est le seul instrument pour mesurer une tension électrique
- 4- La tension U_{AB} est représenté par une flèche dont la pointe est en A.
- 5- Une tension sinusoïdale de période 0,5 ms a 200 Hz comme fréquence.

Exercice 3:

On donne quelque tension électrique entre les points A, B, C d'un circuit électrique :


$$U_{AB} = 4.5V ; U_{BC} = 6.3V ; U_{CD} = 5.5V$$

- 1- Peut-on donner les potentiels aux points A, B, C et D ? justifier votre réponse.
- 2- Le point B est relié à la masse.
 - 2.1- Que signe ce « terme »?

2.2-Si celà est possible, calculer les potentiels aux points A, B, C et D.

Exercice 4:

Pour mesurer la d.d.p aux bornes d'un conducteur AB, dans un circuit un élève a utilisé l'un des montages suivants :

- 1- Que signifie d.d.p ? quel est le terme usuel de cette grandeur ?
- 2- Quel est le pôle de la borne « com » du voltmètre ?
- 3- Quel est le montage correct pour faire la mesure ?

Exercice 5:

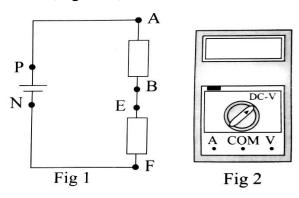
Un circuit électrique comprend un générateur et des ampoules toutes identiques.

La mesure des tensions a donné : $U_{AB} = 1.6$; $U_{BC} = 2.4V$; $U_{AF} = -2.4V$

- 1- Représenter ces différentes tensions sur le schéma du circuit.
- 2- Calculer la tension aux bornes du générateur U_{PN} en ci-tant la loi utilisée.
- 3- Calculer la tension U_{DA} .

Exercice 6:

Le tableau suivant porte une série de mesures de tensions électrique à l'aide d'un voltmètre de calibre 5V ; de classe 2 et de cadran à 150 divisions.


Divisions	30	55	95
U(V)			
$\Delta U(V)$			
ΔU			
$\overline{U}^{(\%)}$			

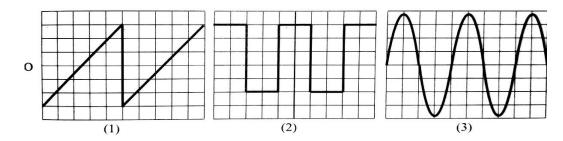
- 1- Compléter ce tableau.
- 2- Quelle est la mesure la plus précise ?

Exercice 7:

Pour mesure la tension aux bornes d'un dipôle EF dans le circuit ci-contre ;

On utilise un millimètre. (Figure 2)

- 1- Quelle est la valeur des tensions U_{PA} ; U_{BE} ; U_{NF}
- 2- Reproduire le schéma de la figure et représenter les fils de connexion permettant de mesurer la tension U_{EF} .
- 3- Représenter la tension U_{DC} par un segment fléché.
- 4- Si $U_{AB} = 2V$ et $U_{FE} = -4V$, calculer U_{PN} .

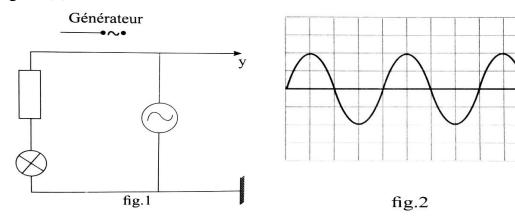

Exercice 8:

Un générateur G.B.F (générateur de basse fréquence) délivre au choix ; une tension périodique comme l'indique les figures suivantes :

Le réglage de l'oscilloscope est :

Sensibilité verticale : $2m V. div^{-1}$

Sensibilité horizontale : 5ms. div^{-1}

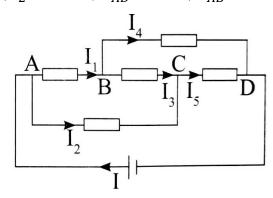


- 1- Déterminer les valeurs maximales des tensions correspondantes à ces figures.
- 2- Quelle sont leurs valeurs minimales de ces tensions ?
- 3- Déterminer la période de chacune de ces tensions.
- 4- En déduire les fréquences correspondantes.

Exercice 9:

Un générateur délivre une tension alternative sinusoïdale de valeur efficace 707,1mV et de fréquence 50 Hz.

Le branchement d'un oscilloscope avec ce générateur a donné l'oscillogramme e la figure (2) :



- 1- Déterminer la valeur maximale et la période de la tension délivrée par le générateur.
- 2- Déterminer la sensibilité verticale utilisée dans cette expérience.
- 3- Déterminer la sensibilité horizontale.

Exercice 9:

On considère le montage de la figure ci-contre, dans lequel on a :

$$I=3A\;;I_1=1.8A;I_2=0.6A\;,\,U_{AD}=12V;U_{AB}=2V\;;\,U_{CD}=6V\;$$

- 1- Calculer les intensités I_2 , I_4 et I_5 .
- 2- Calculer les tensions U_{AC} , U_{BC} et U_{DB} .
- 3- In veut visualiser la tension U_{DA} sur l'oscilloscope.