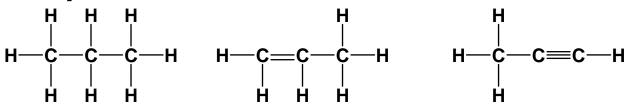
Les molécules organiques et les squelettes carbonés


DELAHI MOHAMED (SM)

I) La chaîne carbonée ou le squelette carboné

♦ <u>Définition</u>:

- Toutes les molécules présentent un enchaînement d'atomes de carbone liés par des liaisons simples, doubles ou triple : c'est le squelette carboné.
- Certaines de ces molécules ont en plus des groupes d'atomes comportant O, Cl, N ... : ce sont des groupes caractéristiques qui définissent des familles organiques identifiables par des tests
- | Une molécule organique comporte un squelette carboné ou chaîne carboné et éventuellement des groupes caractéristiques.

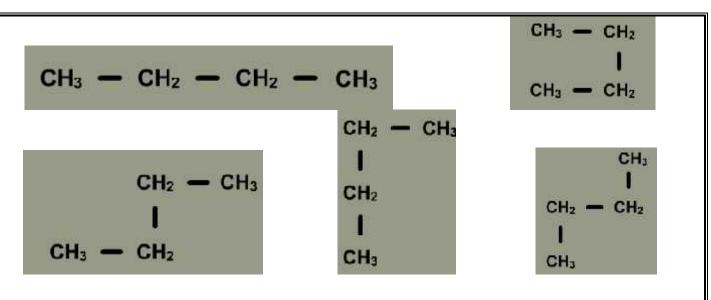
Exemple:

2-/ La chaîne carbonée saturées ou insaturées :

☐ Chaînes carbonées saturées :

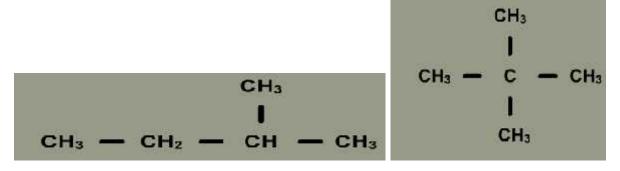
Lorsque les atomes de carbone ne forment entre eux que des liaisons simples.

Exemple:

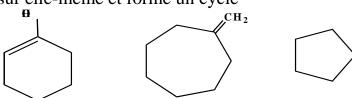

lorsqu'au moins deux atomes de carbone voisins sont liés par une double ou une triple liaison. *Exemple*:

3-/ La chaîne carbonée linéaires, ramifiées ou cycliques:

☐ :Chaînes carbonées linéaires


lorsqu'un carbone est lié à deux autres carbones au plus

Exemple la molécule du Butane

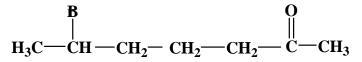

☐ Chaînes carbonées ramifiées

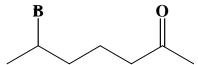
lorsqu'un carbone est lié à au moins 3 carbones. *Exemple*:


☐ : Chaînes carbonées cycliques

La chaîne se referme sur elle-même et forme un cycle

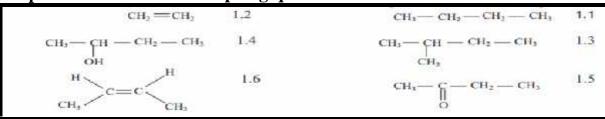
4-/ Les différentes écritures de formules:

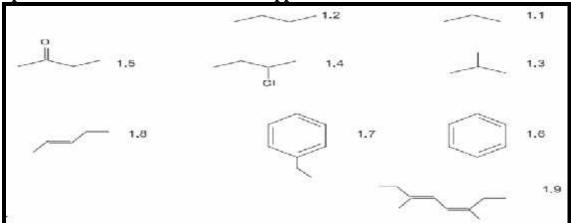

Formule brute	Formule développée	Formule semi- développée	Formule topologique
Indique le nombre et la nature des atomes.	Elle détaille toutes les liaisons et tous les atomes (elle diffère de la représentation de Lewis par l'absence des doublets non liants)	Les liaisons concernant l'atome d'hydrogène ne sont pas représentées.	 Un trait représente une liaison C Ø C. Chaîne carbonée en zigzag sans représenter ni C, ni H Les atomes autres que C et H sont représentés par leur symbole ainsi que les H qu'ils portent.



Exemple 1 :

Les différentes écritures de la molécule d'éthanol	
C_2H_6O	Formule brute
H H	Formule développée
СН3—— СН ₂ —— ОН	Formule semi-développée
ОН	Formule topologique

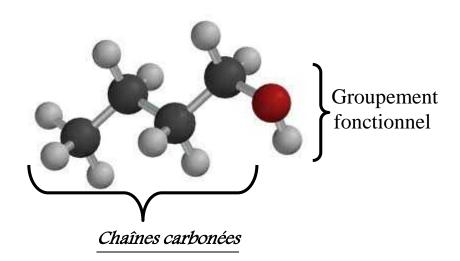

Exemple 2:


Exercice d'application 1

Représenter les formules topologiques des molécules suivantes :

Exercice d'application 2

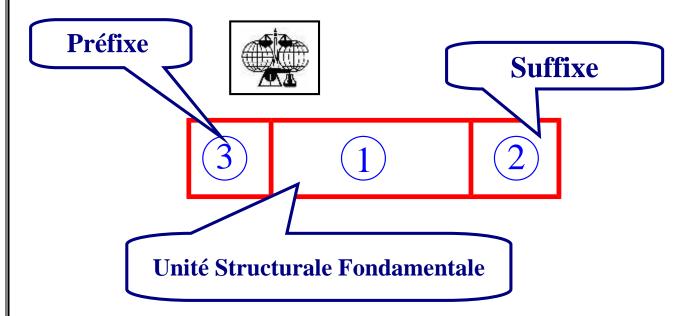
Représenter les formules semi développées des molécules suivantes :



Henri Moissan 3/8 DELAHI MOHAMED

II) Les groupements fonctionnels

Certaines molécules organiques comportent un squelette carboné et un groupe d'atomes (ou atome) appelé *groupe caractéristique* qui leur confère des propriétés spécifiques.


Le carbone porteur du groupe caractéristique est <u>le carbone fonctionnel</u>. Des composés comportant le même groupe caractéristique forment une <u>famille chimique</u>. Ils ont des propriétés chimiques analogues.

Formule générale	Groupe caractéristique	Nom du groupement	Exemple
R—ОН	— он	Les Alcools	С ₂ Н ₅ — ОН
$R \longrightarrow NH_2$	NH ₂	Les Amines	CH3 — NH ₂
R—X	$-\mathbf{X}$ (F;Cl;Br;I)	Les Halogènes	СН3 — В
R—C—R' O	C—C—C	Les Cétones	СH3—С—СН ₃
R—С—Н С—С—Н 0		Les Aldéhydes	H—C—C ₂ H ₅
R—С—ОН ∥ О	—с—он 0		H — C — C ₆ H ₆
R—C—O—R'	—с—о-с 0	Les asters	$\begin{array}{c} -C - O - C_2H_5 \\ \parallel \\ O \end{array}$

III) <u>La Nomenclature des composés organiques selon UICPA :</u> <u>Union International de Chimie Pure et Appliquée</u>

Le nom d'un composé organique est formé de 3 partie :

Unité Structurale Fondamentale

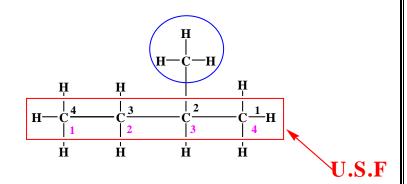
L'unité principale fondamentale représente la partie la plus importante dans le nom d'un composé organique en effet elle représente le nom grecque de la chaîne la plus longue contenant le groupement fonctionnel.

Nombre de carbone de la chaîne principale	Nom de l'U.S.F
1	Méth
2	Eth
3	Prop
4	But
5	Pent
6	Hex
7	Hept
8	Oct
9	Non
10	Déc

Suffixe

Le suffixe est lié au groupement fonctionnel selon le tableau ci-dessous :

Nom du groupement	Groupe caractéristique	Suffixe	exemple
Alcanes	Simple liaison	ane	butane
Alcènes	Double liaison	ene	propène
Alcynes	Triple liaison	yne	butyne


	« hors programme »		
Les Alcools	—он	ol	ethanol
Les Cétones	C—C—C 0	one	propanone
Les Aldéhydes	С—С—Н О	al	butanal
Les Acides carboxyliques	——С—ОН О	oique	Acide ethanoique

Préfixe:

Une fois, la chaîne carbonée linéaire la plus longue est trouvée : les autres branches constitue les ramifications : les radicaux dont le nom constitue le préfixe qui se termine par « yl » et qui dépend du nombre de carbone du radical.

Exemple N°1:

- 1) <u>USF</u>: But (6 carbones dans la chaîne linéaire la plus longue)
- 2) Suffixe : ane (Simple liaison)
- 3) <u>Préfixe</u>: méthyle (1 seul radical avec 1 seul carbone)

2-méthyle butane

Exemple N°2:

- 4) <u>USF</u>: pent (5 carbones dans la chaîne linéaire la plus longue)
- 5) Suffixe : ane (Simple liaison)
- 6) <u>Préfixe</u> : méthyle (2 radicaux chacun avec 1 seul carbone)

2,3-diméthyle pentane

Exercice d'application 3

Donner le nom international des molécules suivantes selon UICPA

IV) Les alcanes et les cyclo-alcanes:

> Définition :

Les alcanes et les cyclo-alcanes sont des hydrocarbures ne comportant que des liaisons simples carbone-carbone (C-C).

> Formule brute

> Exemples:

CH ₄ méthane	C ₄ H ₁₀ butane	C ₆ H ₁₂ cyclohexane
H—————————————————————————————————————		
C ₆ H ₁₂ méthylcyclopentane	C ₄ H ₁₀ méthylpropane	$ m C_8H_{12}$ 1,2,4-triméthyl $ m Cyclopentane$
$H_2C \longrightarrow B$ 2 $H_2C \longrightarrow B$ 3		

Exercice d'application 4

Représenter les formules topologiques et semi développés des molécules suivantes :

_					
	1	2,3-diméthylepentane	<u>2</u>	3-ethyl-2,3-diméthylehexane	
	<u>3</u>	1-ethyl-2-méthylecyclohexane	<u>4</u>	2,5-diméthylehexane	
	<u>5</u>	méthylebutane	<u>6</u>	éthanol	
_	10		•		т

V) Les alcènes et ses dérivées:

> Définition :

Les alcanes Les alcènes sont des hydrocarbures comportant au moins une liaison double carbone-carbone (C=C).

> Formule brute

formule brute générale : C_nH_{2n}

> Exemples:

C_2H_4 éthylène ou éthène	$ m C_6H_{12}$ hexène	$ m C_5H_{10}$ 2-méthylhex-2-éne	
H——C——C——H ————————————————————————————			

> La stéréoisomèrie Z-E

Des stéréoisomères sont des composés ayant même formule brute et la même formule semi développée mais des formules spatiales différentes (**Z vient de Zuzammen : ensemble « même côté » et E vient de Entgegen : contre « côté opposé»**)

Conditions :

La stéréoisomérie Z, E nécessite une double liaison entre 2 carbones.

R Het R' H

 $R \longrightarrow \stackrel{H}{C} \longrightarrow \stackrel{H}{C} \longrightarrow R$

Remarque:

Le passage d'un stéréoisomère Z à un stéréoisomère E nécessite la rupture de la liaison : il n'y a pas de rotation autour d'une liaison double.