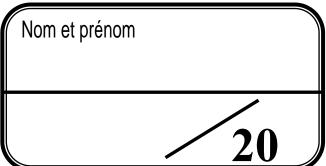
Matière: Physique-Chimie


Prof: ANOUAR

Année Scolaire 2016/2017

DEVOIR SURVEILLER N°2

Lycée: Abi AlAbass Niveau: 1 bac Ex BIOF

Durée : 2h

Exercice 1:

	Exercice 1:
	Une boîte de sucre contient 1,00 kg de saccharose de formule C12H22O11. . La quantité de matière correspondante vaut : n = 2,92 mol.
	1. Calculer la masse molaire du saccharose de deux façons.
1	
1	
	2. Quel est le nombre N de molécules de saccharose dans cette boîte ?
1	2. Qual out to the methodical de ducernariose danie social believ :
	une fiole bien fermée contient du dioxygène de masse m=4g, et sa température 15 ⁰ C et sa pression .P=1, 013.10 ⁵ Pa
	1- Calculez la quantité de matière de dioxygène contenue dans la fiole. on donne M(O)=16g/mol
1,5	
	2- Déterminez la température absolue de ce gaz.
1	
	3- Calculez le volume de ce gaz. on donne R=8,314 SI
1,5	
	Exercice 2:
	L'hélice d'un avion de tourisme de type DR400 possède une hélice bipale de 1,83m de diamètre.
	La puissance du moteur, cette hélice tourne à 2700 tours/minute.
	1) Déterminez la vitesse angulaire en rad.s ⁻¹ de cette hélice.
1	
1	
	2) Déterminez la période de cette hélice.
	2) Beerminez ia periode de cette nence.
1	
	1

	Calculez la vitesse à l'extrémité d'une pale, et comparez cette vitesse à la vitesse du son qui est 40 m.s ⁻¹ .
٥	
	Exercice 3: (6 p) Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée n longueur L =300 m, faisant un angle α =20° avec l'horizontale. La tige du remonte-pente fait un angle β =30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg.
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée longueur L =300 m, faisant un angle α =20° avec l'horizontale. La tige du remonte-pente fait un angle β =30° avec la direction de la piste. La
	 Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée de longueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction
	 Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée du longueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée plongueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables.
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée plongueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables.
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée plongueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables.
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée plongueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables.
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée plongueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables.
	Une skieuse est tirée à vitesse constante, par un remonte-pente, sur une piste verglacée plongueur L =300 m, faisant un angle α=20° avec l'horizontale. La tige du remonte-pente fait un angle β=30° avec la direction de la piste. La masse de la skieuse équipée est m = 58 kg. 1) Faire un bilan des forces s'exerçant sur la skieuse et les représenter sur un schéma. La force exercée par la tige est parallèle à sa direction et les frottements sont négligeables.