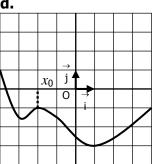
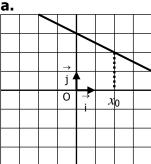
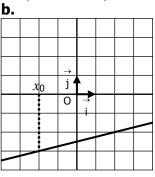
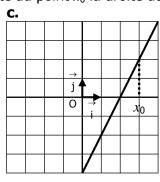

EXERCICE 1A.1

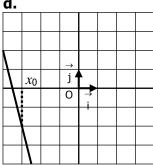
Tracer « au jugé » la tangente à chaque courbe au point x_0


a.

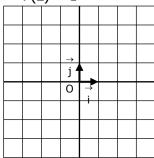

d.




EXERCICE 1A.2


Tracer une courbe de fonction qui admette pour tangente au point x_0 la droite donnée.

a.

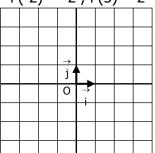


EXERCICE 1A.3

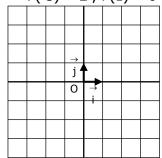
Tracer sur l'intervalle [-4 ; 4] une courbe de fonction remplissant les différents critères, et sa/ses tangente/s.

a.
$$f(2) = 3$$

$$f'(2) = 1$$


b. f(-1) = 2

$$f'(-1) = -2$$


c. f(-2) = 1; f(3) = -1

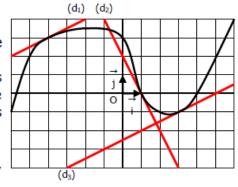
$$f'(-2) = -2$$
; $f'(3) = 2$

d. f(-3) = 1; f(1) = -1

f'(-3) = 2; f'(1) = 0

Construire une fonction f sur [-4; 4]

→ f est croissante sur [-4; -1]


 \rightarrow f(-4) = 1 et f'(-4) = 2

 \rightarrow f(-1) = 3 et f'(-1) = 0 \rightarrow f(4) = 4 et f'(4) = 1

EXERCICE 1A.4

courbe ci-contre La représente une fonction f.

 (d_1) , (d_2) et (d_3) sont les tangentes à cette courbe respectivement aux points (-4), 1 et 3.

Par lecture graphique, déterminer :

f(-4) =f'(-4) = f(1) =f'(1) = f(3) =f'(3) = j

EXERCICE 1A.5

telle que :

→ f atteint son minimum en 2 et f(2) = -3.

b. Les équations réduites des droites :

$$(d_1): y =$$

 $(d_2): y =$

 $(d_3): y =$