Devoir Surveillé n°4A Correction

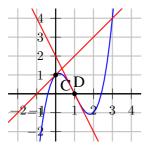
Première ES/L

Dérivation

Durée 1 heure - Coeff. 4 Noté sur 20 points

Exercice 1. Lecture graphique puis calculs

2 points



- 1. Lecture du nombre dérivé : g'(0) = 1.
- **2.** Équation de $T_0: \underline{T_0}: y = x + 1$.
- 3. Lecture du nombre dérivé : g'(1) = -2.
- **4.** Équation de $T_1: T_1: y = -2x + 2$

Exercice 2. Le cours : A compléter

4 points

Ici u et v sont des fonctions dérivables sur I et k est une constante.

I	f de la forme	Dérivée de f
I	$k \times u$	ku'
I	u + v	u' + v'
I	$u \times v$	u'v + uv'
v non nul sur I	$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$
v non nul sur I	$\frac{1}{v}$	$\frac{-v'}{v^2}$
I	u^2	2u'u

Donner directement et sans justification la dérivée des fonctions suivantes sur l'intervalle I:

I	f définie sur I par :	Dérivée de f
[2; 10]	$f_1(x) = \frac{1}{x}$	$f_1'(x) = \frac{-1}{x^2}$
[2; 10]	$f_2(x) = x^2$	$f_2'(x) = 2x$
[2; 10]	$f_3(x) = x^3 + \frac{1}{2}$	$f_3'(x) = 3x^2$
[2; 10]	$f_4(x) = \sqrt{x}$	$f_4'(x) = \frac{1}{2\sqrt{x}}$
[2; 10]	$f_5(x) = 3 - \frac{x}{2}$	$f_5'(x) = -\frac{1}{2}$
[2; 10]	$f_6(x) = \frac{x^3}{3}$	$f_6'(x) = x^2$

Exercice 3. Taux d'accroissement et nombre dérivé

3 points

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 3x + 1$.

1. [2 points] Pour tout réels a et h on a :

$$t_f(h) = \frac{f(a+h) - f(a)}{h}$$

$$t_f(h) = \frac{(a+h)^2 - 3(a+h) + 1 - (a^2 - 3a + 1)}{h}$$

$$t_f(h) = \frac{a^2 + 2ah + h^2 - 3a - 3h + 1 - a^2 + 3a - 1}{h}$$

$$t_f(h) = \frac{2ah + h^2 - 3h}{h}$$

$$t_f(h) = 2a + h - 3$$

2. [1 point] En déduire le nombre dérivé de f en a.

$$f'(a) = \lim_{h \to 0} t(h) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = 2a - 3$$

Exercice 4. Une histoire de tangentes

4.5 points

On considère la fonction g définie sur \mathbb{R} par $g(x) = 2x^3 - 12x^2 + 18x + 1$.

1. [1 point] La fonction g est dérivable sur \mathbb{R} comme somme et composée de fonctions qui le sont. Pour tout réel x on a :

$$g'(x) = 6x^2 - 24x + 18$$

2. [2 points] L'équation de la tangente à \mathscr{C}_g en A(2; g(2)) est : $T_2: y=g'(2)(x-2)+g(2)$

$$\begin{cases} g(2) = 5 \\ g'(2) = -6 \end{cases} \Rightarrow T_2 : y = -6(x-2) + 5 \text{ soit } \boxed{T_2 : y = -6x + 17}$$

3. [1.5 points] On cherche donc les abscisses des points $A(x_0; g(x_0))$ de \mathscr{C}_g qui admettent une tangente de coefficient directeur nul et donc tels que $g'(x_0) = 0$. Cela revient donc à résoudre l'équation g'(x) = 0.

$$g'(x) = 2 \iff 6x^2 - 24x + 18 = 0$$

C'est une équation du second degré de la forme $ax^2 + bx + c = 0$ avec

$$\begin{cases} a = 6 \\ b = -24 \\ c = 18 \end{cases} \Rightarrow \Delta = 144 > 0$$

Le discriminant étant positif, l'équation admet deux solutions réelles :

$$x_1 = \frac{24 - \sqrt{144}}{12} = 1$$
 et $x_1 = \frac{24 + \sqrt{144}}{12} = 3$

Ce sont les abscisses les abscisses des points de \mathcal{C}_q qui admettent une tangente de coefficient directeur nul soit :

$$\mathscr{S} = \{1\ ;\ 3\}$$

Exercice 5. 3.5 points

On considère la fonction h définie sur $]-\infty$; 0] par $h(x)=\frac{2-x}{1-3x}$.

1. [2 points] Déterminer la fonction dérivée de h sur $]-\infty$; 0].

La fonction h est définie et dérivable sur $]-\infty$; 0] comme somme et composée de fonctions qui le sont.

La fonction h est de la forme $\frac{u}{v}$ donc de dérivée $\frac{u'v - uv'}{v^2}$ avec :

$$u(x) = 2 - x$$
 $u'(x) = -1$
 $v(x) = 1 - 3x$ $v'(x) = -3$

Donc pour tout x de $]-\infty$; 0]:

$$h'(x) = \frac{-1 \times (1 - 3x) - (2 - x) \times (-3)}{(1 - 3x)^2}$$

$$h'(x) = \frac{-1 + 3x - (-6 + 3x)}{(1 - 3x)^2}$$

$$h'(x) = \frac{-1 + 3x + 6 - 3x}{(1 - 3x)^2}$$

$$h'(x) = \frac{5}{(1 - 3x)^2}$$

2. [1.5 points] Déterminer l'équation de la tangente T_0 à \mathscr{C}_h au point d'abscisse $0. T_0: y = h'(0)(x-0) + h(0)$

$$\begin{cases} h(0) &= 2 \\ h'(0) &= 5 \end{cases} \Rightarrow T_2 : y = 5(x-0) + 2 \text{ soit } \boxed{T_0 : y = 5x + 2}$$

Exercice 6. 3 points

1. [1.5 point] On considère la fonction j définie sur \mathbb{R} par $j(x) = \frac{1}{1 + 2x^2}$.

Déterminer la fonction dérivée de j sur $\mathbb R$.

La fonction j est définie et dérivable sur \mathbb{R} comme somme et composée de fonctions qui le sont.

La fonction j est de la forme $\frac{1}{v}$ donc de dérivée $\frac{-v'}{v^2}$ avec :

$$v(x) = 1 + 2x^2$$
 $v'(x) = 4x$

Donc pour tout x de \mathbb{R} :

$$j'(x) = \frac{-4x}{(1+3x^2)^2}$$

2. [1.5 point] On considère la fonction k définie sur $[1; +\infty[$ par $k(x) = 2x\sqrt{x}$.

Déterminer la fonction dérivée de k sur $[1; +\infty[$.

La fonction k est définie et dérivable sur $[1; +\infty[$ comme somme et composée de fonctions qui le sont.

La fonction k est de la forme uv donc de dérivée u'v + uv' avec :

$$u(x) = 2x \qquad u'(x) = 2$$

$$v(x) = \sqrt{x} \qquad v'(x) = \frac{1}{2\sqrt{x}}$$

Donc pour tout x de $[1; +\infty[:$

$$k'(x) = 2 \times \sqrt{x} + 2x \times \frac{1}{2\sqrt{x}}$$

$$k'(x) = 2\sqrt{x} + \frac{x}{\sqrt{x}}$$

$$k'(x) = 2\sqrt{x} + \frac{x \times \sqrt{x}}{\sqrt{x} \times \sqrt{x}}$$

$$k'(x) = 2\sqrt{x} + \frac{x \times \sqrt{x}}{x}$$

$$k'(x) = 2\sqrt{x} + \sqrt{x}$$

$$k'(x) = 2\sqrt{x} + \sqrt{x}$$

$$k'(x) = 3\sqrt{x}$$