Espaces vectoriels normés.

Exercices 2017-2018

Niveau 1.

Normes générales.

1. Soit $(E, \|.\|)$ un **K**-espace vectoriel normé, et soient x et y des éléments de E.

Montrer que : $||x|| + ||y|| \le ||x + y|| + ||x - y||$.

2. Soient $(E, \|.\|)$ un espace vectoriel normé, x et y des vecteurs de E non nuls et $a \in [0,1[$.

Montrer que si : $\frac{\left\|y-x\right\|}{\left\|x\right\|} \le a$, alors : $\frac{\left\|y-x\right\|}{\left\|y\right\|} \le \frac{a}{1-a}$.

3. Soient E et F deux K-espaces vectoriels, $\|.\|$ une norme sur F, et : $u \in \mathcal{L}(E,F)$.

Pour : $x \in E$, on note : N(x) = ||u(x)||.

Montrer que N est une norme sur E si et seulement si u est injective.

4. Soient $a_1,...,a_n$ des réels et N définie de \mathbf{K}^n dans \mathbb{R} par :

 $\forall x = (x_1, ..., x_n) \in \mathbf{K}^n, N(x) = a_1 . |x_1| + ... + a_n . |x_n|.$

Donner une condition nécessaire et suffisante sur les a_i pour que N soit une norme sur \mathbf{K}^n .

5. Soit : $E = C^1([0,1],\mathbb{R})$.

Montrer que l'application N définie par : $\forall f \in E$, $N(f) = |f(0)| + \int_0^1 |f'(t)| dt$, est une norme sur E.

6. Soit: $A \in \mathcal{S}_n(\mathbb{R})$, telle que: $Sp(A) \subset]0,+\infty)$.

Montrer que l'application N définie par : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), N(X) = \sqrt{X_n \cdot X_n}$, est une norme sur $\mathcal{M}_{n,1}(\mathbb{R})$.

Suites et comparaisons de normes.

7. On définit (f_n) dans $C^0([0,1],\mathbb{R})$ par : $\forall n \in \mathbb{N}^*$,

• $\forall x \in \left[0, \frac{1}{n}\right], f_n(x) = n - n^2.x$, et:

- $\forall x \in \left[\frac{1}{n}, 1\right], f_n(x) = 0.$
- a. Justifier que : $\forall n \in \mathbb{N}, f_n \in \mathbb{C}^0([0,1],\mathbb{R}),$ puis calculer $N_1(f_n), N_2(f_n)$ et $N_{\infty}(f_n)$.
- b. Trouver des constantes α , α' et α'' strictement positives telles que : $\forall f \in C^0([a,b],\mathbb{R})$,
 - $N_1(f) \leq \alpha . N_{\infty}(f)$,
 - $N_2(f) \le \alpha' . N_{\infty}(f)$,
 - $N_1(f) \le \alpha'' \cdot N_2(f)$.
- c. Montrer avec la question a qu'il n'est pas possible de trouver β , β ', β '' strictement positives telles que : $\beta . N_{\scriptscriptstyle \infty}(f) \leq N_{\scriptscriptstyle 1}(f)$, $\beta' . N_{\scriptscriptstyle \infty}(f) \leq N_{\scriptscriptstyle 2}(f)$, ou : $\beta'' . N_{\scriptscriptstyle 2}(f) \leq N_{\scriptscriptstyle 1}(f)$.
- 8. Soit E le \mathbb{R} -espace vectoriel formé des suites réelles bornées (u_n) , telles que : $u_0 = 0$.

 $\text{Pour}: \ u \ \in \ \mathsf{E}, \ \text{on pose}: \ N_{_{\infty}}(u) = \sup_{_{n \geq 0}} \bigl| u_{_{n}} \bigr| \, , \ \text{et}: \ N(u) = \sup_{_{n \geq 0}} \bigl| u_{_{n+1}} - u_{_{n}} \bigr| \, .$

- a. Montrer que $\,N_{\scriptscriptstyle \infty}\,$ et $\,N\,$ sont des normes sur E.
- b. Montrer que : $N \le 2.N_{\odot}$.
- c. Peut-on trouver une inégalité du même type mais en inversant les rôles de $N_{\scriptscriptstyle \infty}$ et de N ?

On pourra pour cela envisager une famille de séries dont la somme est constante égale à 1.

- 9. Soit : E = { $f \in C^1([0,1],\mathbb{R}), f(0) = 0$ }, et pour : $f \in E$, on note :
 - $\bullet N(f) = \sup_{t \in [0,1]} |f(t)|, \text{ et } :$
 - $N'(f) = \sup_{t \in [0,1]} |f'(t)|$.
 - a. Justifier que N et N' sont des normes sur E.
 - b. Montrer que : $N \le N'$.
 - c. A l'aide de fonctions simples, montrer qu'une inégalité dans l'autre sens n'est pas possible.
- 10. Dans **K**[X], on note:

$$\bullet \ \forall \ P \ \in \ \mathbf{K}[\mathsf{X}\}, \ P \neq 0 \ , \ N_{_{\infty}}(P) = \max_{0 \leq k \leq \deg(P)} \bigl| a_{_k} \bigr| \ , \ N(P) = \sum_{_{_{k=0}}}^{^{+\infty}} \bigl| a_{_k} \bigr| .2^{^{-k}} \ , \ \mathsf{et} \ :$$

- $N(0) = N_{m}(0) = 0$.
- a. Montrer que l'on définit ainsi deux normes sur K[X].
- b. Montrer qu'on peut trouver : $\alpha > 0$, telle que : $N \le \alpha . N_{\infty}$.
- c. Trouver une suite simple qui converge vers 0 pour N et pas pour $N_{\scriptscriptstyle \infty}$ et en déduire qu'on ne peut pas trouver : $\beta > 0$, tel que : $\beta . N_{\infty} \leq N$.
- 11. Soit E un espace vectoriel normé par | . | de dimension finie.

Pour:
$$u \in \mathcal{L}(\mathsf{E})$$
, tel que: $\forall x \in \mathsf{E}$, $||u(x)|| \le ||x||$, pose: $\forall n \in \mathsf{N}$, $v_n = \frac{1}{n+1} \cdot \sum_{k=0}^n u^k$.

- a. Simplifier $v_n o(u id_F)$.
- b. Montrer que : $\ker(u id_E) \oplus \operatorname{Im}(u id_E) = E$.
- c. En déduire que : $\forall x \in E$, $\lim v_n(x) = p(x)$,

où p est la projection de E sur $ker(u-id_E)$ parallèlement à $Im(u-id_E)$.

d. A-t-on: $\lim_{n\to +\infty} v_n = p$?

On pourra utiliser une base de E, la norme infinie attachée à cette base et une norme dans $\mathscr{L}(E)$ déduite de cette norme infinie.

Suites et normes dans $\mathcal{M}_n(K)$.

- 12. On définit la suite (X_n) d'éléments de $\mathscr{M}_{2,1}(\mathbb{R})$ par :

•
$$X_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, et:
• $\forall n \ge 0$, $X_{n+1} = A.X_n$, où: $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$.

Montrer que (X_n) converge.

- 13. On note : $\mathsf{E} = \mathscr{M}_\mathsf{n}(\mathbb{R})$, pour : $n \ge 1$, et pour : $A \in \mathsf{E}$, on note : $N(A) = n \cdot \max_{1 \le i, j \le n} \left| a_{i,j} \right|$.
 - a. Calculer $N \begin{pmatrix} 1 & 2 & 3 \\ -3 & -2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ dans $\mathcal{M}_3(\mathbb{R})$.
 - b. Montrer que N est une norme dans le cas général.
 - c. Montrer que : $\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2$, $N(A.B) \leq N(A).N(B)$.

- d. Ce résultat est-il toujours vrai si on remplace N par N' définie par : $\forall A \in E, N'(A) = \max_{1 \le i \le n} \left| a_{i,j} \right|$?
- 14. Pour une matrice : $A \in \mathcal{M}_n(\mathbf{K})$, on note : $||A|| = \max_{1 \le i \le n} \sum_{j=1}^n |a_{i,j}|$.
 - a. Que représente ||A|| pour une matrice A de $\mathcal{M}_n(\mathbf{K})$?
 - b. Montrer qu'on définit ainsi une norme sur $\mathcal{M}_n(\mathbf{K})$.
 - c. Montrer que : $\forall (A,B) \in \mathscr{M}_n(\mathbf{K})^2$, on a : $||A.B|| \le ||A|| ||B||$.
 - d. Montrer que si on note N_{∞} la norme infinie dans $\mathcal{M}_{n,1}(\mathbf{K})$, alors : $\forall (A,X) \in \mathcal{M}_n(\mathbf{K}) \times \mathcal{M}_{n,1}(\mathbf{K}), \ N_{\infty}(A.X) \leq \|A\|.N_{\infty}(X)$.
 - e. En déduire que : $\forall A \in \mathcal{M}_{n}(\mathbb{C}), \forall \lambda \in Sp(A), |\lambda| \leq |A|$.
- 15. Soit M un élément de $\mathcal{M}_n(\mathbb{C})$.

On suppose que la suite (M^n) converge vers une matrice A.

- a. Montrer que $(M^{2.n})$ converge aussi vers A.
- b. En déduire que : $A = A^2$.
- 16. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$.
 - a. En utilisant une norme d'algèbre, montrer que si $((A.B)^p)$ tend vers 0, alors $((B.A)^p)$ tend aussi vers 0.
 - b. Montrer que si A et B commutent, si (A^p) tend vers P, et (B^p) vers Q, alors P et Q commutent.
 - c. Si (A_p) est une suite de matrices inversibles de $\mathcal{M}_n(\mathbb{C})$ qui converge vers A et si la suite (A_p^{-1}) converge vers B, alors A est inversible et : A = B.
 - d. Est-il possible de trouver une suite (A_p) de matrices inversibles qui converge vers une matrice A et telle que la suite (A_p^{-1}) diverge ?

Topologie.

- 17. Les ensembles suivants sont-ils ouverts ou fermés ?
 - a. N, ZZ ou Q dans R.
 - b. $\bigcup_{n \in N} \left| \frac{1}{2^{n+1}}, \frac{1}{2^n} \right|$ dans \mathbb{R} .
 - c. $[0,1] \times [0,1] \times [0,+\infty[$ dans \mathbb{R}^3 .
 - d. un hyperplan dans Rⁿ.
- 18. On note : $E = \mathbb{R}^2$, et : $\forall (x, y) \in E^2$, $||(x, y)|| = |x| + \sqrt{x^2 + y^2}$.
 - a. Montrer que | . | est bien une norme sur E.
 - b. Représenter la boule de centre O et de rayon 1 pour cette norme.
- 19. Pour A et B deux ouverts de \mathbb{R}^n , on note : $A+B=\{a+b,\,a\in A,\,b\in B\}$. Montrer que A+B est un ouvert de \mathbb{R}^n .
- 20. a. Montrer que dans un espace vectoriel de dimension finie, tout hyperplan est fermé.
 - b. En déduire que les ensembles suivants sont fermés dans $\mathcal{M}_n(\mathbf{K})$.
 - l'espace vectoriel des matrices de trace nulle,
 - les espaces vectoriels de matrices triangulaires supérieures ou triangulaires inférieures,
 - l'espace vectoriel des matrices diagonales,
 - les espaces vectoriels de matrices symétriques ou de matrices antisymétriques.
- 21. Soit : E = C⁰([0,1], \mathbb{R}), muni de la norme N_{∞} . On note : $F = \{ f \in \mathbb{E}, \forall x \in [0,1], f(x) \ge 0 \}$, et : $\Omega = \{ f \in \mathbb{E}, \forall x \in [0,1], f(x) > 0 \}$.

Montrer que F est fermé dans E et Ω est ouvert dans E.

- 22. Soit (E, N) un espace vectoriel normé de dimension finie et F une partie fermée non vide de E.
 - a. Montrer que : $d(x, F) = \inf \{ ||x y||, y \in F \}$, existe pour tout : $x \in E$.
 - b. Montrer que : $\forall x \in E, (d(x, F) = 0) \Leftrightarrow (x \in F)$
- 23. Soit E l'espace vectoriel des suites réelles bornées (u_n) .

On note alors : $\forall u \in E, u = (u_n), \|u\|_{\infty} = \sup_{n \ge 0} |u_n|.$

- a. Montrer qu'on définit ainsi une norme sur E.
- b. Montrer que la suite constante égale à 1 notée 1 est intérieure à : $F = \{(u_n) \in E, \forall n \ge 0, u_n \ge 0\}$.

Continuité, applications lipschitziennes.

24. Soit $(E, \|.\|)$ un espace vectoriel normé, et : $x \in E$, non nul.

On note f l'application de E dans $\mathbb R$ définie par :

$$\forall x \in E, \ f(x) = ||x - a||, \ \text{si} : ||x|| \le ||a||, \ \text{et} : \ f(x) = 0, \ \text{sinon}.$$

- a. Montrer que f est continue en a.
- b. Montrer que f n'est pas continue en -a.
- 25. Soit f une application d'un intervalle I de \mathbb{R} dans \mathbb{R} , de classe \mathbb{C}^1 .
 - a. Montrer que si : $\exists k \in \mathbb{R}, \forall x \in I, |f'(x)| \le k$, alors f est k-lipschitzienne.
 - b. Montrer que f définie sur \mathbb{R}^+ par : $\forall x \ge 0$, $f(x) = \frac{1}{1+x}$,

est k -lipschitzienne pour une certaine valeur k et trouver la plus petite valeur k possible.

26. Soit $(E, \|.\|)$ un espace vectoriel normé, et soit : $x \in E$.

Montrer que l'application définie sur E par : $x \mapsto ||x||.a$, est lipschitzienne.

Niveau 2.

Normes générales.

27. Soit : $E = C^0([0,1],\mathbb{R})$.

Montrer que l'application N définie par : $\forall f \in E$, $N(f) = \sup_{x \in [0,1]} |x.f(x)|$, est une norme sur E.

28. Soit A une partie non vide de \mathbb{R} .

Quelles conditions A doit-elle satisfaire pour que : $P \mapsto \|P\|_A = \sup_{t \in A} |P(t)|$, définisse une norme sur $\mathbb{R}[X]$?

29. Soient $f_1,...,f_n$ des fonctions continues de [0,1] dans \mathbb{R} .

A quelle condition l'application $N: (x_1,...,x_n) \mapsto \|x_1.f_1+...+x_n.f_n\|_{\infty} = \sup_{t \in [0,1]} |x_1.f_1(t)+...+x_n.f_n(t)|$, définit-elle une norme sur \mathbb{R}^n ?

30. Soit : $A \in O(n)$.

Montrer que :
$$\|A\|_1 \le n.\sqrt{n}$$
 , où : $\|A\|_1 = \sum_{1 \le i, i \le n} |a_{i,j}|$.

Suites et comparaison de normes.

- 31. On note E l'ensemble des suites réelles bornées.
 - a. Vérifier que E muni des lois habituelles constitue bien un R-espace vectoriel.
 - b. Vérifier que N_{∞} définie sur E par : $\forall u = (u_n) \in E$, $N_{\infty}(u) = \sup_{n \in N} |u_n|$, est une norme sur E.

c. Pour : $u \in E$, on note par ailleurs : $N_1(u) = \sum_{n=0}^{+\infty} |u_n| e^{-n}$.

Montrer que N_1 définit une autre norme sur E.

- d. Montrer qu'on peut trouver : $\alpha > 0$, tel que : $N_1 \le \alpha . N_{\infty}$.
- e. A l'aide d'une suite d'éléments de E, montrer qu'on ne peut pas trouver : $\beta > 0$, tel que : $\beta . N_{\infty} \leq N_{\perp}$.
- 32. Soit E l'ensemble des fonctions définies de [0,1] dans ℝ, lipschitziennes.
 - a. Montrer que E est un sous-espace vectoriel de $C^0([0,1],\mathbb{R})$.
 - b. Montrer que : $\sup_{0 \le x < y \le 1} \frac{\left| f(y) f(x) \right|}{y x}$ existe pour tout f dans E, nombre qu'on notera K(f).
 - c. Montrer que N définie pour f dans E par : N(f) = |f(0)| + K(f), est une norme sur E.
 - d. Montrer que toute suite d'éléments de E qui converge pour N converge pour N_{∞} .
 - e. Trouver une suite d'éléments de E qui montre que la réciproque est fausse.
- 33. Soit (P_n) une suite de polynômes de degré inférieur ou égal à m et convergeant simplement vers une fonction f sur \mathbb{R} .
 - a. Justifier l'existence d'un polynôme : $P \in \mathbb{R}_m[X]$, tel que : $\forall 0 \le k \le m$, P(k) = f(k).

On pourra utiliser les polynômes : $\forall \ 0 \leq k \leq m \,, \ L_k = \prod_{i=0, \atop i \neq i}^N \frac{(X-i)}{(k-i)} \,.$

- b. Montrer que l'application N définie sur : $\mathsf{E} = \mathbb{R}_{\mathsf{m}}[\mathsf{X}]$, par : $\forall \ Q \in \mathsf{E}, \ N(Q) = \max_{0 \le k \le n} \left| Q(k) \right|$, définit une norme sur E .
- c. Montrer que la suite (P_n) converge vers P pour cette norme N.
- d. Soit [a,b] un segment de \mathbb{R} .

On note : $\forall \ Q \in \mathsf{E}, \ N_{\infty,[a,b]}(Q) = \sup_{t \in [a,b]} \left| Q(t) \right|.$

Justifier que $N_{\infty,[a,b]}$ est encore une norme sur E.

- e. En déduire que : f = P, et donc qu'une telle suite ne peut converger que vers un polynôme.
- 34. On note : $E = \mathbb{R}[X]$.

Pour: $a \ge 0$, on définit: $\forall P \in E$, $N(P) = |P(a)| + \int_0^1 |P'(t)| dt$.

- a. Montrer que N définit une norme sur E.
- b. Etudier la convergence pour la norme N de la suite (P_n), avec : $\forall n \in \mathbb{N}, P_n = X^n$.

Norme matricielle (ou norme d'algèbre) dans $\mathscr{M}_n(\mathbb{C})$, $\mathscr{L}(E)$.

35. Pour :
$$A \in \mathcal{M}_{\mathsf{n}}(\mathbb{R})$$
, on pose : $||A|| = \sqrt{\sum_{1 \le i,j \le n} a_{i,j}^2}$.

- a. Montrer qu'on définit ainsi une norme sur $\mathcal{M}_n(\mathbb{R})$.
- b. Montrer que cette norme a la propriété de norme matricielle à savoir :

$$\forall (A,B) \in \mathscr{O}_{\mathsf{n}}(\mathbb{R})^2, \|A.B\| \leq \|A\|.\|B\|.$$

- 36. Soient : $A \in \mathcal{M}_n(\mathbb{C})$, diagonalisable, P inversible et D diagonale telles que : $D = P^{-1}.A.P$.
 - a. Montrer que la suite (A^p) converge si et seulement si (D^p) converge.
 - b. Donner une condition nécessaire et suffisante portant sur Sp(A) pour que (A^p) converge.
- 37. Soit : $A \in O(n)$, telle que : $1 \notin Sp(A)$.
 - a. Etudier la convergence de la suite définie par : $\forall p \in \mathbb{N}, U_p = \frac{1}{p+1}.(I_n + A + ... + A^p)$.

b. La suite (A^p) est-elle convergente?

On pourra pour les deux questions utiliser la norme associée au produit scalaire canonique dans $\mathcal{M}_n(\mathbb{R})$.

- 38. Soit (E, N) et (F, N') deux espaces vectoriels normés de dimension finie et soit : $u \in \mathcal{L}(E,F)$.
 - a. Soient \mathscr{B} une base de E, et N_{m} la norme infinie attachée à la base \mathscr{B} .

Montrer que : $\exists K \in \mathbb{R}, \forall x \in E, N'(u(x)) \leq K.N_{\infty}(x)$.

- b. En déduire que $\{N'(u(x)), x \in E, N(x) \le 1\}$ est borné et qu'il admet une borne supérieure, notée $\|u\|$.
- c. Montrer que $\|.\|$ définit une norme sur $\mathcal{L}(\mathsf{E},\mathsf{F})$ (on l'appelle norme subordonnée aux normes N et N').

Topologie.

- 39. Montrer que O(n) est fermé et borné dans $\mathcal{M}_n(\mathbb{R})$.
- 40. Soit : $E = C^0([0,1],\mathbb{R})$, muni de la norme $\| \cdot \|_1$.

Montrer que la fonction constante égale à 1, notée 1, est adhérente à : $F = \{ f \in E, f(0) = 0 \}$.

41. Soit E l'espace vectoriel des fonctions continues bornées de R dans R muni de la norme | . | . .

On définit :

- $E_{-} = \{ f \in E, \forall x \le 0, f(x) = 0 \},$
- $E_+ = \{ f \in E, \forall x \ge 0, f(x) = 0 \},$
- C = $\{c.1, c \in \mathbb{R}\}$, où 1 est la fonction constante égale à 1.
- a. Montrer que : E_, E_, et C sont des sous-espaces vectoriels fermés de E.
- b. Montrer que : $E = E_{-} \oplus E_{+} \oplus C$.
- 42. Dans : $E = C^0([0,1],\mathbb{R})$, on note : $A = \{ f \in E, f(0) = 0, \int_0^1 f(t).dt \ge 1 \}$.
 - a. Montrer que A est une partie fermée de (E, N_{∞}) , et que : $\forall f \in A$, $N_{\infty}(f) > 1$.
 - b. Calculer : $\inf_{f \in A} N_{\infty}(f)$.

Continuité, applications lipschitziennes.

43. Soit f une application continue de \mathbb{R}^d dans \mathbb{R} , telle que : $\lim_{\|x\| \to +\infty} f(x) = +\infty$.

Montrer que f admet un minimum.

44. Soit : $(a,b) \in \mathbb{R}^{+2}$.

On munit \mathbb{R}^2 de la norme $\|.\|_1$, et on note f l'application définie sur \mathbb{R}^2 par :

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f((x_1, x_2)) = (a.x_2, b.x_1).$$

Montrer que f est lipschitzienne.

45. On note : $E = C^0([0,1],\mathbb{R})$, et on le munit de la norme $\|.\|_1$.

On définit par ailleurs ϕ sur E par : $\forall f \in E, \ \phi(f) = \int_0^1 f(t).dt$.

Montrer que ϕ est linéaire et continue de $(E, \|.\|,)$ dans $(\mathbb{R}, |.|)$.

Niveau 3.

Normes.

46. Soit (E, $\| . \|$) un espace vectoriel normé, et soient x et y des vecteurs de E non nuls.

Montrer que : $\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \le \frac{2 \cdot \|x - y\|}{\max(\|x\|, \|y\|)}$.

Suites et comparaison de normes.

47. Soit : $n \ge 2$.

Existe-t-il une norme N sur $\mathcal{M}_n(\mathbb{C})$ telle que : $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall P \in Gl_n(\mathbb{C}), N(A) = N(P^{-1}.A.P)$?

48. On note : $E = \{ f \in C^1([0,1],\mathbb{R}), f(0) = 0 \}.$

 $\text{Pour}: \ f \ \in \ \mathsf{E}, \ \text{on note}: \ N_{_{\infty}}(f) = \sup_{t \in [0,1]} \left| f(t) \right|, \ n(f) = \sup_{t \in [0,1]} \left| f(t) + f'(t) \right|, \ \mathsf{et}: \ N(f) = \sup_{t \in [0,1]} \left| f(t) \right| + \sup_{t \in [0,1]} \left| f'(t) \right|.$

- a. Montrer que n et N sont deux normes sur E.
- b. En remarquant que f est une primitive de f', montrer que : $N_{\infty}(f) \leq N_{\infty}(f')$.
- c. On note : $\forall f \in E, \forall t \in [0,1], g(t) = e^t.f(t)$.

Montrer successivement que : $N_{\infty}(g') \le e.n(f)$, $N_{\infty}(f') \le N_{\infty}(g) + N_{\infty}(g')$, puis : $N(f) \le 4.e.n(f)$.

- d. En déduire que toute suite d'éléments de E qui converge pour n converge pour N, et réciproquement.
- e. Est-ce encore le cas pour N et N_m ?
- 49. Soit E l'espace vectoriel des fonctions continues de [0,1] dans ℝ et E⁺ le sous-ensemble des fonctions de E qui sont positives et ne s'annulent qu'en un nombre fini de valeurs.

Pour: $\varphi \in E^+$, on définit N_{φ} par: $\forall f \in E$, $N_{\varphi}(f) = \int_0^1 \varphi(t) |f(t)| dt$.

- a. Montrer que N_{ω} est une norme sur E.
- b. Montrer que : \forall $(\varphi_1, \varphi_2) \in E^{+2}$, strictement positives, une suite d'éléments de E converge pour N_{φ_1} si et seulement si elle converge pour N_{φ_2} .
- c. On pose : $\forall x \in [0,1], \varphi_1(x) = x, \varphi_1(x) = x^2$.

A l'aide d'une suite bien choisie, montrer que le résultat de la question b n'est plus vrai.

Norme matricielle (ou norme d'algèbre) dans $\mathcal{L}(E)$, $\mathcal{M}_n(K)$.

50. Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$ non diagonalisable telle que A admet λ comme valeur propre d'ordre n.

On note N une matrice triangulaire supérieure stricte et P une matrice inversible telles que :

$$P^{-1}.A.P = \lambda .I_n + N.$$

- a. Justifier l'existence de N , puis montrer que : ($|\lambda|$ < 1) \Rightarrow ((A^p) converge).
- b. La réciproque est-elle vraie ?
- 51. Soient E un K-espace vectoriel de dimension finie, \mathscr{D} une base de E et N_{∞} la norme infinie attachée à \mathscr{D} .

Pour : $u \in \mathcal{L}(\mathsf{E})$, on définit : $\|u\| = \sup_{x \in E, x \neq 0} \left(\frac{N(u(x))}{N(x)} \right)$, où N est une norme sur E , autrement dit la norme de

l'exercice 38 où l'on a choisi : E = F, et la même norme N dans E et dans F.

- a. Montrer que : $||u|| = \sup_{x \in E, N(x)=1} (N(u(x))) = \sup_{x \in E, N(x) \le 1} (N(u(x))).$
- b. Montrer que la norme ainsi définie est une norme d'algèbre.

Topologie.

52. Soient N_1 et N_2 deux normes sur un \mathbb{R} -espace vectoriel \mathbb{E} .

On note : $B'_1 = \{x \in E, N_1(x) \le 1\}$, et : $B'_2 = \{x \in E, N_2(x) \le 1\}$.

- a. Montrer que : $(B'_1 = B'_2) \Leftrightarrow (N_1 = N_2)$.
- b. Même question avec les boules ouvertes.
- 53. On note N l'application définie de \mathbb{R}^2 dans \mathbb{R} par : $\forall (x,y) \in \mathbb{R}^2$, $N((x,y)) = \sup_{t \in \mathbb{R}} \frac{|x+t.y|}{1+t+t^2}$.
 - a. Montrer que N est une norme sur \mathbb{R}^2 .
 - b. Représenter graphiquement la boule : $B'(O,1) = \{(x,y) \in \mathbb{R}^2, N((x,y)) \le 1\}$.
 - c. Quelle est l'aire (usuelle) de cette boule ?

- 54. Soit E le \mathbb{R} -espace vectoriel $C^0([0,1],\mathbb{R})$, muni de la norme N_{∞} habituelle.
 - a. Montrer que : $A = \{ f \in E, \forall x \in [0,1], f(x) \neq 0 \}$, est un ouvert de E pour N_{∞} .
 - b. Montrer que l'ensemble des points adhérents à A pour N_{∞} est constitué des fonctions continues sur [0,1], positives sur [0,1] ou négatives sur [0,1].
- 55. On note E l'espace vectoriel des fonctions bornées de [0,1] dans ℝ, et on le munit de la norme $\| . \|_{\infty}$.

On note : $A = \{ f \in E, \forall x \in [0,1], 2 + f(x) \le e^{f(x)} \}.$

Montrer que A est une partie fermée et non bornée de E.

- 56. Montrer que l'ensemble des rotations de \mathbb{R}^3 est une partie fermée de $\mathscr{L}(\mathbb{R}^3)$.
- 57. Soit E un espace vectoriel de dimension finie et soit F un sous-espace vectoriel de E.
 - a. Montrer que : $F = \overline{F}$.
 - b. Montrer que si : $\dim(F) \neq \dim(E)$, alors : $\overset{\circ}{F} = \emptyset$.
- 58. Soit E un espace vectoriel normé et soit C un convexe de E.

Montrer que \overline{C} et $\overset{\circ}{C}$ sont des convexes de E.

Continuité, applications lipschitziennes.

- 59. Soit (E, $\| . \|$) un espace vectoriel normé et f l'application définie sur E par : $\forall x \in E, f(x) = \frac{x}{1 + \|x\|^2}$.
 - a. Montrer que f est continue de E dans E pour la norme $\| . \|$.
 - b. Montrer que : $f(E) = B'\left(0, \frac{1}{2}\right)$.
- 60. On note E l'espace vectoriel des suites réelles bornées muni de la norme | . | définie par :

$$\forall x \in \mathsf{E}, \ \|x\|_{_{\infty}} = \sup_{n > 0} |x_n|.$$

On définit l'opérateur de différence Δ sur E par : $\forall x \in E$, $\Delta(x) = y$, avec : $\forall n \in \mathbb{N}$, $y_n = x_{n+1} - x_n$. Montrer que Δ est linéaire et continu pour $\|.\|_{\infty}$.

61. Soit K une partie fermée, bornée et non vide de \mathbb{R}^n .

Soit f une application de K dans K telle que : $\forall (x, y) \in K^2$, $(x \neq y) \Rightarrow (\|f(x) - f(y)\| < \|x - y\|)$.

- a. Montrer que f est continue, puis que f possède un unique point fixe c.
- b. Soit (x_n) une suite déterminée par :
 - $x_0 \in K$,
 - $\forall n \in \mathbb{N}, x_{n+1} = f(x_n).$

Montrer que la suite (x_n) converge vers c.

- 62. Soit (E, N) un espace vectoriel normé et soient K_1, K_2 des parties fermées, bornées non vides de E.
 - a. Pour tout : $x_0 \in E$, montrer que l'application : $x \mapsto ||x x_0||$, est lipschitzienne.
 - b. Pour : $x \in E$, montrer que la quantité : $d(x, K_1) = \inf_{x_1 \in K_1} ||x x_1||$, existe, puis que l'application :
 - $x\mapsto d(x,K_1)$, est lipschitzienne. c. On note : $d(K_1,K_2)=\inf_{x\in K_1,y\in K_2}\!\!\left\|x-y\right\|$.

Justifier l'existence de $d(K_1, K_2)$, puis montrer que : $\exists (x_1, x_2) \in K_1 \times K_2, ||x_1 - x_2|| = d(K_1, K_2)$.