Contrôle d'informatique

Durée: 1 heure

Exercice 1 On considère une fonction $f : \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^3 ainsi que deux réels $a \in \mathbb{R}$ et h > 0. On rappelle (ou on admet) que la fonction $F : x \mapsto \int_{-x}^{x} f(t) dt$ est une application de classe \mathscr{C}^4 telle que $\forall x \in \mathbb{R}$, F'(x) = f(x).

a) Déterminez les valeurs à choisir pour les coefficients α et β de telle manière que la formule :

(1)
$$\int_{a}^{a+h} f(t) dt \approx \alpha f(a) + \beta f(a+h)$$

soit exacte pour des polynômes de degré le plus haut possible. On suppose désormais α et β ainsi choisis.

b) On note $I = \int_a^{a+h} f(t) dt$, $I(h) = \alpha f(a) + \beta f(a+h)$ et R(h) = I - I(h).

En appliquant la formule de TAYLOR-YOUNG à la fonction R, prouver que :

$$R(h) = -\frac{h^3}{12}f''(a) - \frac{h^4}{24}f^{(3)}(a) + o(h^4).$$

c) En utilisant la formule d'intégration (1), donner une approximation de

$$I_1 = \int_a^{a+h/2} f(t) dt$$
 et $I_2 = \int_{a+h/2}^{a+h} f(t) dt$

puis en écrivant que $I = I_1 + I_2$, donner une approximation de I notée J(h).

d) On définit r(h) = I - J(h). Par un calcul analogue à celui de la question b. et qu'on ne demande pas d'effectuer, on obtient :

$$r(h) = -\frac{h^3}{48}f''(a) - \frac{h^4}{96}f^{(3)}(a) + o(h^4)$$

En déduire des coefficients constants λ et μ tels que :

$$\lambda J(h) + \mu I(h) = I + ch^4 + o(h^4)$$

où c est une constante à déterminer.

e) À quelle méthode d'intégration numérique correspond l'approximation de I par $\lambda J(h) + \mu I(h)$?

Exercice 2 On considère un polynôme *p* à coefficients réels de degré inférieur ou égal à *n* :

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

représenté en machine par le tableau de ces coefficients : $[a_0, a_1, \dots, a_{n-1}, a_n]$.

a) À tout réel α on associe la suite finie (b_0, b_1, \dots, b_n) définie par les relations :

(1)
$$b_n = a_n$$
 et $\forall i \in [0, n-1], b_i = a_i + \alpha b_{i+1}$

et on note p_1 le polynôme $p_1(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots, b_2 x + b_1$.

Montrer que $p(x) = (x - \alpha)p_1(x) + b_0$.

De la formule précédente il résulte immédiatement que $b_0 = p(\alpha)$. On appelle *schéma de* Hörner l'algorithme de calcul de $p(\alpha)$ à l'aide des relations (1). Cet algorithme est souvent utilisé pour évaluer $p(\alpha)$ car il provoque moins d'erreurs numériques qu'une démarche naïve.

- b) Exprimer $p'(\alpha)$ en fonction de p_1 et de α et en déduire à l'aide du schéma de Hörner une suite finie (c_1, \ldots, c_n) telle que $p'(\alpha) = c_1$.
- c) L'algorithme de Newton-Hörner est une méthode d'approximation d'une racine d'un polynôme p obtenue en appliquant la méthode de Newton-Raphson à p mais en évaluant p et p' par le biais du schéma de Hörner. Rédiger une fonction Python qui prend en arguments un polynôme p représenté par la liste de ces coefficients $[a_0,a_1,\ldots,a_n]$ et une valeur initiale x_0 et qui retourne la première itérée x_1 de la méthode de Newton (en supposant qu'elle existe).