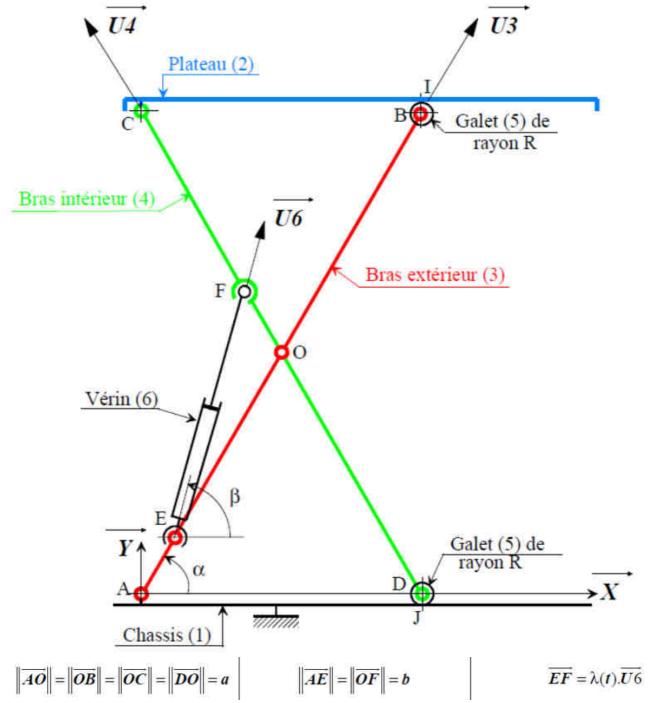

<u>Spé</u> 2017

Table élévatrice

I. Présentation

On s'intéresse à une table élévatrice rencontrée sur une ligne de palettisation de gobelets. Pour respecter les cadences de production, la montée/descente du plateau de la table doit se faire rapidement. Elle doit également pouvoir supporter le poids des éléments posés sur celle-ci.

Cet ensemble « table élévatrice » admet un plan de symétrie $\left(A, \overrightarrow{X}, \overrightarrow{Y}\right)$. Le bras extérieur 3 est en liaison pivot d'axe $\left(A, \overrightarrow{Z}\right)$ avec le châssis 1 et en liaison pivot d'axe $\left(B, \overrightarrow{Z}\right)$ avec un galet 5 de rayon R. Le galet 5 roule sans glisser sur le plateau 2 au point I. Le bras intérieur 4 est en liaison pivot d'axe $\left(C, \overrightarrow{Z}\right)$ avec le plateau 2 et en liaison pivot d'axe $\left(D, \overrightarrow{Z}\right)$ avec un galet 5' de rayon R. Le galet 5' roule sans glisser sur le châssis 1 au point J. Le bras 3 est en liaison pivot d'axe $\left(O, \overrightarrow{Z}\right)$ avec les bras 4. Le plateau peut se translater verticalement grâce à un vérin hydraulique 6. Ce vérin est en liaison rotule en E avec les bras 3 et en F avec les bras 4.



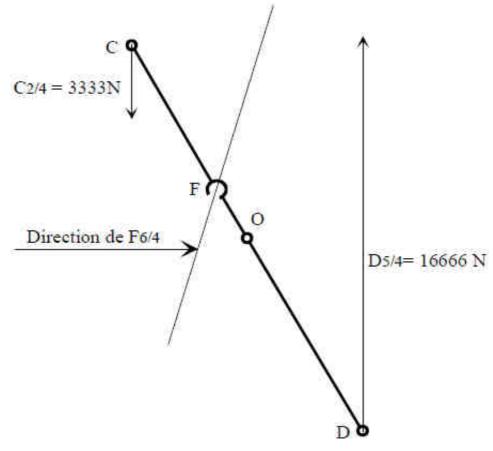
II. <u>Dimensionnement du vérin</u>

II.1. Hypothèses

- Le paramètre du mouvement est $\alpha(t)$. En position haute (celle de la figure), la valeur de α est notée α_{max} et en position basse elle est notée α_{min} .
- La vitesse de translation de la tige du vérin 6 par rapport à son corps est considérée comme constante.
- Question 1. En écrivant une fermeture de chaîne, montrer que : $\alpha = \arccos\left(\sqrt{\frac{\lambda^2 a^2}{4b(b-a)}}\right)$
- Question 2. Calculer $\dot{\alpha}(t)$ en fonction de λ , $\dot{\lambda}$, a, b et α .
- Question 3. Déterminer le torseur cinématique, au point C, du plateau $\bf 2$ par rapport au châssis $\bf 1$ en fonction de a, α et $\dot{\alpha}$.
- Question 4. Calculer $\vec{V}(B,3/2)$, la vitesse du point B, appartenant à **3** par rapport au plateau **2** en fonction de a, α et $\dot{\alpha}$.
- Question 5. Calculer la course utile Cu du vérin en fonction de a, b, α_{\min} et α_{\max} .
- Question 6. Calculer la longueur minimale de la bande de roulement des galets Lu en fonction de a, α_{min} et α_{max} .
- Question 7. Calculer le temps de montée du plateau t_m en fonction de Cu et $\dot{\lambda}$.

Spé 2017

Hypothèses


- L'ensemble admettant un plan de symétrie (A, X, Y), on se ramènera à un système plan.
- Le plateau est arrêté à une position $\, \alpha \, . \,$
- Les différentes liaisons mécaniques sont supposées parfaites.
- Seul le poids de l'ensemble plateau et palette pleine sera pris en compte. Le poids des autres pièces sera négligé. Le poids de l'ensemble plateau et palette pleine est noté $P\overrightarrow{Y}$ avec P=mg. Ce poids est modélisable par un glisseur passant par un point G.
- On donne $\overrightarrow{AG} = \overrightarrow{L} \overrightarrow{X} + \overrightarrow{H} \overrightarrow{Y}$.

Question 8. Isoler le galet **5** puis le plateau **2**, et calculer les composantes des actions mécaniques $\overline{C_{4-2}}$ et $\overline{I_{5-2}}$ en fonction de P, α et des données géométriques.

Spé 2017

Pour une position donnée du bras **4** (figure ci-dessous) les actions mécaniques en C et en D sont connues. Question 9. Justifier la direction de l'effort $\overline{F_{6-4}}$.

Question 10. Déterminer $\overline{F_{6-4}}$ (norme et sens) le plus simplement possible (on pourra mesurer les dimensions utiles sur le schéma du document réponse donné à l'échelle 1/10). Indiquer le sens de cette action sur l'épure du document réponse. Laisser les constructions éventuelles sur l'épure.

Question 11. Exprimer la pression $\bf p$ de l'huile à envoyer dans le vérin en fonction $\overline{\bf F}_{6-4}$ développée par le vérin et du diamètre $\bf D$ du piston.