TD T6: THERMODYNAMIQUE DES SYSTEMES OUVERTS – BILANS D'ENERGIE POUR UN ECOULEMENT STATIONNAIRE

Exercice 1 : Compresseur calorifugé

Dans un compresseur fonctionnant en régime permanent, de l'air est comprimé, de façon adiabatique, à partir de l'état $P_1 = 1,0$ bar, $T_1 = 293$ K, jusqu'à une pression $P_2 = 3,0$ bar. On suppose le gaz parfait. On prendra : $C_{p,m} = 29$ J.mol⁻¹. K^{-1} , R = 8,314 J.mol⁻¹. K^{-1} et M (masse molaire) = 29 g.mol⁻¹.

On définit le coefficient de performance (ou rendement à l'isentropique) η comme le rapport du travail massique $(w_m)_{is}$ que consommerait le compresseur si l'évolution était isentropique sur le travail réel absorbé $(w_m)_{réel}$ par la machine. On donne $\eta=0.80$.

- 1) Donner la valeur de la température finale T₂ ainsi que celle du travail (w_m)_{is} dans le cas idéal (évolution isentropique).
- 2) Déterminer les nouvelles valeurs T'₂ et (w_m)_{réel} pour le compresseur réel. Calculer l'entropie créée par unité de masse de fluide comprimé.

Exercice 2: Turbine au diazote

Du diazote, assimilé à un gaz parfait diatomique (masse molaire $M=28.0~g.mol^{-1}$, $\gamma=1.40$) s'écoule en régime permanent dans une turbine, avec un débit massique $D_m=4.00~kg.s^{-1}$. Les conditions de l'écoulement sont :

- A l'entrée : pression $P_1 = 4.00$ bar, vitesse $v_1 = 20.0$ m.s⁻¹
- A la sortie : pression $P_2 = 2,00$ bar, vitesse $v_2 = 180$ m.s⁻¹.

La turbine fournit à l'extérieur une puissance P = 80,0 kW, le gaz sortant à une température T_2 égale à la température extérieure $T_a = T_2 = 298$ K.

- 1) Dans l'hypothèse où la transformation subie par l'azote est isotherme, quelle est la puissance thermique reçue par le gaz ?

 Calculer la variation d'entropie par seconde de l'azote, et en déduire la création d'entropie par seconde pour la turbine.
- 2) Si le gaz a subi une transformation adiabatique, quelle est sa température à l'entrée de la turbine ? En déduire la création d'entropie par seconde dans la turbine.

Exercice 3: Tuyère calorifugée

On considère une tuyère horizontale, calorifugée. De l'air, assimilé à un gaz parfait, est en écoulement permanent dans la tuyère. A l'entrée de la tuyère, la température est $T_e = 900$ K, la pression $P_e = 1,5$ bar, et on négligera la vitesse ($v_e \approx 0$). En sortie de la tuyère, la température est T_s , la pression $P_s = 1,0$ bar et la vitesse $v_s = c$.

- 1) Donner l'expression de la vitesse c en fonction de T_e , T_s , la constante des gaz parfaits R, la masse molaire M de l'air, et du coefficient isentropique γ .
- 2) Que vaut la vitesse de sortie c si l'évolution est isotherme ?
- 3) Dans quel cas la vitesse de sortie sera maximale ? Que vaut la vitesse de sortie maximale c_{max} ? Faire l'application numérique.
- 4) On modélise à présent la transformation par une évolution polytropique : P $v^k = c^{te}$ (v étant le volume massique). Que dire du coefficient k ? Que dire de la vitesse de sortie ?

Données : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$; $M = 29 \text{ g.mol}^{-1}$; $\gamma = 1,4$.