Corrigé du devoir surveillé n°1

I. Acomètissage du module philae

$$\boxed{\mathbf{A.1/1}} \, \mathbf{C}_{com} = \frac{m_{com}}{\mu_{com}} = \frac{4}{3} \pi r_{com}^3$$

d'où

$$r_{com} = \left(\frac{3m_{com}}{4\pi\mu_{com}}\right)^{1/3} = 1.8 \text{ km}$$

A.3/0,5

$$\left[\frac{Gm_{com}}{r^2}\right] = \frac{L^3.M^{-1}.T^{-2}.M}{L^2} = L.T^{-2}$$

ce qui est bien la dimension d'une accélerration (comme \overrightarrow{q}).

A.4/1 Lors du largage, $g_{com}(r_{larg}) = \frac{Gm_{com}}{r_{larg}^2} = 1, 3.10^{-6} m.s^{-2}$

Lors du contact, $g_{com}(r_{com}) = \frac{Gm_{com}}{r_{com}^2} = 2, 1.10^{-4}m.s^{-2}$ On ne peut pas considérer le champ uniforme lors de la chute.

 $\mathbf{B.1/1} \mid$ D'après le PFD dans le réferentiel lié à Rosetta, considéré comme galiléen, $m_{ph} \overrightarrow{a} = m_{ph} \overrightarrow{g}$. En projection selon $\overrightarrow{e_r}$,

d'où

$$\ddot{r} + \frac{Gm_{com}}{r^2} = 0$$

 $\mathbf{B.2/1,5}$ Par lecture graphique, on a

$$\tau_0 = 145000 \text{ s} = 1j \, 16h$$

 $\mathbf{B.3/1} \mid 7h = 25200s \text{ donc cela correspond à la courbe f soit } v_0 = -0,75 \text{ m.s}^{-1}$

B.4/1 Sur la trajectoire de phase correspondant à $v_0 = -0.75 \text{ m.s}^{-1}$, on lit $\dot{r}(r_{com}) = -1.1 \text{ m.s}^{-1}$.

 $|\mathbf{B.5/1}|$ L'énergie potentielle est telle que $\delta \mathbf{W} = \mathbf{F}(r).dr = \mathbf{G}mm_{com}d(1/r)$

d'où

$$E_p = -\frac{GmMm_{com}}{r} + K \text{ avec } K = 0$$

puisque $E_p \to 0$ si $r \to \infty$.

 $\mathbf{B.6/0,5}$ Philae n'étant soumis qu'à des forces conservartives, son énergie mécanique est constante.

B.7/2 Par conservation de l'énergie mécanique entre largage et atterrissage, on a

$$\frac{1}{2}m_{ph}v_0^2 - \frac{Gm_{ph}Mm_{com}}{r_{larg}} = \frac{1}{2}m_{ph}v_f^2 - \frac{Gm_{ph}Mm_{com}}{r_{com}}$$

d'où

$$v_f = \sqrt{v_0^2 + 2Gm_{com} \left(\frac{1}{r_{com}} - \frac{1}{r_{larg}}\right)} = 1,1 \text{ m.s}^{-1}$$

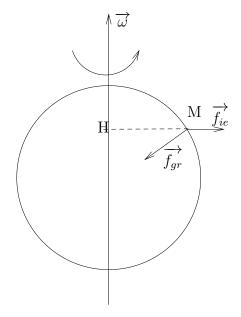
On retrouve bien la valeur de la question B.4

 $\boxed{\mathbf{C.1/1}}$ La masse de Philae est identique sur Terre et à la surface de la comète, C'est son poids qui est moins important (puisque g_{com} est bien inférieur à g_{terre}).

Le poids sur la comète est $P = m_p h g_{com} = 2,0.10^{-2} N$ ce qui correspondrait au poids d'une masse de 2,0 g sur terre (proche de 1,7 g).

 $\boxed{\mathbf{C.2/1}}$ Le référentiel cométocentrinque n'est pas galiléen et il faut ajouter la force d'inertie d'entrainement $\overrightarrow{f_{ie}} = m\omega^2\overrightarrow{\mathrm{HM}}$

C.3/1 On voit sur le dessin que le poids réel est diminué du fait de la force d'entraînement (et sa direction n'est plus vers le centre de la comète).



 $\overline{\mathbf{C.4/2}}$ Le poids est dans le plan équatorial où $\overrightarrow{\mathrm{HM}} = r_{com} \overrightarrow{e_r}$,

$$m\overrightarrow{g}_{com} + m\omega^2\overrightarrow{\text{HM}}$$

La variation relative de poids est donc

$$\frac{\Delta P}{P} = \frac{\omega^2 r_{com}}{g_{com}} = 17\%$$

en prenant $\omega = 2\pi/T$.

D.1/1 On a montré en cours

$$\overrightarrow{v} = r\dot{\theta}\overrightarrow{e_{\theta}}$$
 et $\overrightarrow{a} = r\ddot{\theta}\overrightarrow{e_{\theta}} - r\dot{\theta}^{2}\overrightarrow{e_{r}}$

D.2/1 On applique simplement le PFD dans le référentiel cométocentrique supposé galiléen,

$$m_{ros} \overrightarrow{a} = m_{ros} \overrightarrow{g}_{com}$$

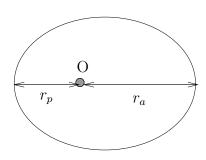
Il vient alors

$$v_1 = \sqrt{\frac{Gm_{com}}{r_1}} = 15 \text{ cm.s}^{-1}$$

$$\boxed{\mathbf{D.3/1}} \, \mathbf{T} = \frac{2\pi r_1}{v_1} = 14,6j$$

MP 2017-2018 Parc des loges

D.4/1



 $\mathbf{D.5/1}$ L'énergie mécanique est pour un mouvement elliptique $\mathbf{E}_m = -\mathbf{G} \frac{m_{ros} m_{com}}{2a}$ avec $r_p + r_a = 2a$, on obtient

$$E_m = -G \frac{m_{ros} m_{com}}{r_p + r_a}$$

 $\boxed{\mathbf{D.6/2}}$ Au péricentre, $\mathbf{E}_m = \mathbf{E}_c + \mathbf{E}_p$ s'écrit

$$-G\frac{m_{ros}m_{com}}{r_p + r_a} = \frac{1}{2}m_{ros}v_p^2 - G\frac{m_{ros}m_{com}}{r_p}$$

d'où

$$v_p = \sqrt{2Gm_{com}\left(\frac{1}{r_p} - \frac{1}{r_a + r_p}\right)} = 30 \text{ cm.s}^{-1}$$

 $\boxed{\mathbf{D.7/1}}$ Sur l'orbite circulaire de rayon r_p , la vitesse de la sonde est $v_p' = \sqrt{\frac{\mathrm{G}m_{com}}{r_p}} = 26 \mathrm{~cm.s^{-1}}$ Il faut donc ralentir la sonde de 4 cm.s⁻¹ lorsque celle-ci est au péricentre.

II. MINES MP 2009

 $\mathbf{1/1}$ On applique le théorème du moment cinétique à M :

$$\frac{\overrightarrow{\mathrm{dL}}_{\mathrm{O}}}{\overrightarrow{\mathrm{d}t}} = \overrightarrow{\mathrm{OM}} \wedge \overrightarrow{\mathrm{F}} = \overrightarrow{\mathrm{0}}$$

puisque $\overrightarrow{F} = -\overrightarrow{\text{grad}}\ U(r) = F\overrightarrow{u_r}$. On a donc $\overrightarrow{L}_O = \overrightarrow{OM} \wedge m\overrightarrow{v} = \overrightarrow{C^{\text{te}}}$ et donc \overrightarrow{OM} qui est perpendiculaire à un vecteur constant. On en conclut que le mouvement est plan.

2/1 On remarque tout d'abord que $E_p = mU(r)$ et $L_O = mr^2\dot{\varphi}$. Donc $\dot{\varphi} = \frac{C}{r^2}$.

Or
$$E = E_c + E_p = \frac{1}{2}m(\dot{r}^2 + (r\dot{\varphi})^2) + mU(r) = m\varepsilon$$

d'où

$$\varepsilon = \frac{1}{2}\dot{r}^2 + \frac{C^2}{2r^2} + U(r)$$

3/0,5

$$\overrightarrow{F} = \frac{-\mathcal{G}M_s m}{r^2} \overrightarrow{u_r} = -m \overrightarrow{\text{grad}} \frac{-\mathcal{G}M_s}{r}$$

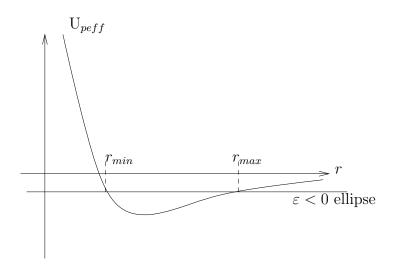
d'où

$$K = \mathcal{G}M_s$$

 $\boxed{4/2}$ Le plus simple est d'introduire l'énergie potentielle effective massique :

$$U_{eff}(r) = U(r) + \frac{C^2}{2r^2} = \frac{-K}{r} + \frac{C^2}{2r^2}$$

On représente U_{eff} :



La condition demandée impose d'avoir $U_{effmin} < 0 < \varepsilon$. Or le minimum de $U_{eff}(r)$ correspondant au mouvement circulaire $r_{min} = r_{max}$ est atteint en $r_c = \frac{C^2}{K}$ et vaut $U_{eff}(r_c) = -\frac{K^2}{2C^2}$. La condition est donc

$$-\frac{K^2}{2C^2} < \varepsilon < 0$$

5/2,5 A l'aphélie et au périhélie, $\dot{r}=0$ donc r_{min} et r_{max} sont solutions de l'équation $\varepsilon=\frac{1}{2}\frac{C^2}{2r^2}-\frac{K}{r}$ qui est une équation du second degré $r^2\varepsilon+Kr-\frac{1}{2}C^2=0$.

Les solutions sont

$$r_{min} = \frac{-\mathbf{K} + \sqrt{\mathbf{K}^2 + 2\varepsilon\mathbf{C}^2}}{2\varepsilon} \quad \text{et} \quad r_{max} = \frac{-\mathbf{K} - \sqrt{\mathbf{K}^2 + 2\varepsilon\mathbf{C}^2}}{2\varepsilon}$$

En sommant les deux solutions on obtient

$$\varepsilon = -\frac{\mathbf{K}}{r_{min} + r_{max}}$$

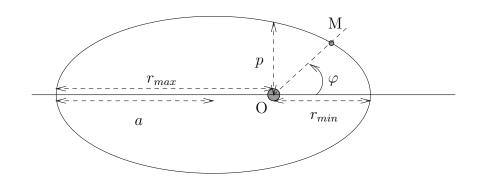
On peut écrire $r^2 + \frac{\mathbf{K}r}{\varepsilon} - \frac{\mathbf{C}^2}{2\varepsilon} = 0 = (r - r_{min})[r - r_{max})$ donc

$$C^{2} = -2\varepsilon r_{min}r_{max} = -\frac{2Kr_{min}r_{max}}{r_{min} + r_{max}}$$

On a alors

$$\varepsilon = \frac{-K}{2a} \quad \text{et} \quad C = \sqrt{Kp}$$

est lié avec $r_{min} \neq r_{max}$ on en conclut que la trajectoire est une ellipse de foyer S. Comme le mouvement de l'ellipse, p le paramètre de l'ellipse et e l'excentricité.



7/3 On constate que r augmente pour $0 < \varphi < \pi$ donc $\dot{r} > 0$. L'expression de ε implique

$$\dot{r}^2 = 2\varepsilon - \frac{\mathrm{C}^2}{r^2} + \frac{2\mathrm{K}}{r} \quad \text{d'où} \quad \dot{r} = \sqrt{2\varepsilon - \frac{\mathrm{C}^2}{r^2} + \frac{2\mathrm{K}}{r}}$$

d'où

$$\mathrm{d}t = \frac{r\mathrm{d}r}{\sqrt{2\varepsilon r^2 - \mathrm{C}^2 + 2\mathrm{K}r}} = \sqrt{\frac{a}{\mathrm{K}}} \frac{r\mathrm{d}r}{\sqrt{-r^2 + \frac{\mathrm{C}^2}{2\varepsilon} + 2ar}}$$

Or, $a^{2}e^{2} - a^{2} = \frac{(r_{max} - r_{min})^{2}}{4} - \frac{(r_{max} + r_{min})^{2}}{4} = -r_{max}r_{min}$

Or d'après la question 5, $-r_{max}r_{min} = \frac{\mathrm{C}^2}{2\varepsilon}$, on peut donc intégrer entre t=0 et τ

$$\tau = \int_{r_{min}}^{r(\varphi)} \sqrt{\frac{a}{K}} \frac{r dr}{\sqrt{a^2 e^2 - (r-a)^2}}$$

8/3 On effectue le changement de variable proposé $dr = ea \sin \xi d\xi$ et

$$\tau = \sqrt{\frac{a}{K}} \int_0^{\xi} \frac{ea \sin \xi d\xi a (1 - e \cos \xi)}{\sqrt{a^2 e^2 - a^2 e^2 \cos^2 \xi}} = \sqrt{\frac{a}{K}} \int_0^{\xi} a (1 - e \cos \xi) d\xi$$

d'où

$$\tau = a\sqrt{\frac{a}{K}}(\xi - e\sin\xi)$$

En $\varphi = \pi$, $r = r_{max} = a(1 + e)$ et $\xi = \pi$ donc

$$\boxed{\frac{\mathrm{T}}{2} = a\sqrt{\frac{a}{\mathrm{K}}\pi}}$$

Le nom de cette relation est la loi de Kepler.

 $\boxed{\mathbf{9/2}}$ La loi de Kepler exprimée en années et unités astronomiques s'écrit $\frac{a^{3/2}}{\mathrm{T}} = \frac{1^{3/2}}{1} = 1$. Or $a = \frac{r_{min}}{1-e} = 16,86u.a$ donc

$$T = a^{3/2} = 69, 2 \text{ ans}$$

Pour $r=26,06\mathrm{UA},\,\xi=\mathrm{Arccos}~\frac{a-r}{ea}=0,94~\mathrm{donc}~\tau=2,1~\mathrm{ans}.$

10/1 Le vent solaire entraîne les poussières constituant la queue de la comète; le soleil et la queue sont situés de part et d'autre de la tête et le Soleil est disposé du côté de S_1 .

 $\fbox{11/2}$ Soit \overrightarrow{v}_c la vitesse de la comète, \overrightarrow{V} celle des paticules émises par le soleil et \overrightarrow{v}_r la vitesse des particules dans le référentiel lié à la comète. l composition des vitesses implique

$$\overrightarrow{v}_c = \overrightarrow{\mathbf{V}} - \overrightarrow{v}_r$$

On constate qu'on a la situation :

et donc que la comète se déplace dans le sens $C_1 \to C_2 \to C_3$ De plus

$$\tan \Phi = \frac{v_{\rm C}}{\rm V}$$
 d'où $\Phi = \operatorname{Arctan} \frac{v_{\rm C}}{\rm V} = 4,3^{\circ}$