Thermodynamique - Chapitre 2 : Transfert d'énergie-1er principe

Ce qu'il faut retenir...

TRANSFORMATIONS D'UN SYSTEME :

On s'intéresse aux transformations d'un système d'un état d'équilibre initial vers un état d'équilibre final.

Transformation quasi-statique ou infiniment lente :

Transformation suffisamment lente pour que le système passe par une suite continue d'états d'équilibre interne : les variables caractérisant l'état du système s'ajustent à tout instant et restent bien définies.

Transformation réversible :

Une transformation réversible est une transformation qui se fait par une succession continue d'états d'équilibre, la condition d'équilibre concernant le système et le milieu extérieur avec lequel il interagit.

A chaque instant : si paroi mobile $P = P_{ext}$ (mécaniquement réversible), si paroi diathermane $T = T_{ext}$.

Transformation irréversible :

Transformation non réversible. Les paramètres ne sont définis qu'aux états initiaux et finaux. Une transformation rapide, brutale est irréversible.

Causes d'irréversibilité : frottements ; hétérogénéités de concentration, pression ou température...

Conditions XP	Pression du système constante	Températur e du système constante	Volume du système constant	Pression extérieure uniforme et constante	Température extérieure uniforme et constante	Système calorifugé
Nature	isobare	isotherme	isochore	monobare	monotherme	adiabatique

Il existe 2 modes de transfert d'énergie : travail et chaleur.

TRAVAIL:

Définition: Transfert d'énergie résultant d'un déplacement macroscopique des points d'application des forces extérieures.

Cette forme de transfert est donc associée à des variations macroscopiques de paramètres externes directement mesurables.

Travail des forces de pression :

Au cours d'une transformation finie entre un état initial et un état

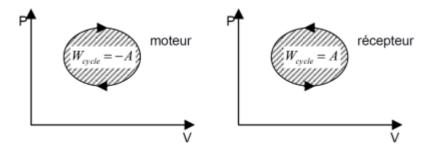
final:
$$W = -\int_{i}^{f} P_{ext} \cdot dV$$

- W < 0 si V augmente lors de la transformation
- W > 0 si V diminue lors de la transformation

Interprétation graphique dans le cas d'une transformation mécaniquement réversible :

 $W_{\text{détente}}$ = - aire sous la courbe P(V) $W_{\text{compression}}$ = + aire sous la courbe P(V)

Cas d'un cycle :

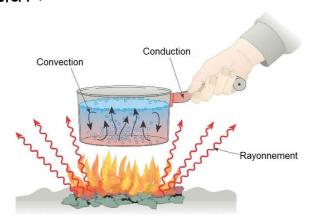


CHALEUR:

Définition :

La chaleur apparaît comme un mode de transfert d'énergie d'origine microscopique résultant d'un très grand nombre d'interactions à l'échelle microscopique. Elle est associée à l'agitation permanente et désordonnée des molécules du système, l'agitation thermique; cette agitation, se communiquant de proche en proche, transporte de l'énergie.

Modes de transfert :



1^{ER} PRINCIPE DE LA THERMODYNAMIQUE :

Energie totale E: $E = E_c^M + E_p^{ext} + U$

 E_c^M : Energie cinétique macroscopique (mouvement d'ensemble)

 $E_{p}^{\it ext}$: Energie potentielle des forces extérieures

Energie interne : $U = E_c^m + E_p^{int}$, fonction d'état extensive.

Enoncé: L'énergie totale d'un système fermé est conservative.

Bilan énergétique : $\Delta \left(E_c^M + E_p^{ext} + U\right) = W^{nc,ext} + Q$

W^{nc,ext} est le travail des forces extérieures non conservatives.

Q se calcule à partir du 1er principe.

- Si le système est macroscopiquement au repos : $\Delta U = W^{nc,ext} + Q$
- Si de plus, $W^{nc,ext} = W_{pression}$ et que la transformation est isochore : $\Delta U = Q$

 C_v apparaît comme la chaleur mise en jeu pour faire varier la température d'un corps à volume constant de 1 degré.

ENTHALPIE:

Définition: H = U + PV, fonction d'état extensive.

Cas du gaz parfait : H = U(T) + nRT

2^{ème} loi de Joule : l'enthalpie d'un gaz parfait ne dépend que de la température.

Variation entre un état initial et un état final : $\Delta H = H_f - H_i = C_p (T_f - T_i)$

 C_p est la capacité thermique à pression constant, en J.K⁻¹.

Relation de Mayer : $C_P - C_V = nR$

On définit :
$$\gamma = \frac{C_P}{C_V} \implies C_V = \frac{nR}{\gamma - 1}$$

$$C_P = \frac{nR\gamma}{\gamma - 1}$$

	H(T)	C_{p}	γ
Gaz parfait monoatomique	$\frac{5}{2}nRT$	$\frac{5}{2}nR$	$\frac{5}{3}$
Gaz parfait diatomique	$\frac{7}{2}nRT$	$\frac{7}{2}nR$	$\frac{7}{5}$

Transformation monobare : avec $P_f = P_i = P_{ext}$

Si le système est macroscopiquement au repos, que $W^{nc,ext} = W_{pression}$ et que la transformation est réversible isobare ou monobare avec $P_f = P_i = P_{ext}$:

$$\Delta H = G$$

 C_p apparaît comme la chaleur mise en jeu pour faire varier la température d'un corps à pression constante de 1 degré.

Phase condensée :

Modèle d'une phase indilatable et incompressible : $dV \approx 0 \Rightarrow \Delta U \approx \Delta H = C\Delta T$ Exemple : capacité thermique massique de l'eau liquide $c_{eau} = 4.18 \text{ kJ.kg}^{-1}.\text{mol}^{-1}$

	Transformations d'un gaz parfait macroscopiquement au repos et tel que W ^{nc,ext} = W _{pression}								
	Isochore	Réversible Isobare	Réversible Adiabatique	Réversible Isotherme					
Relation	V = Cte	P = Cte	Lois de Laplace $PV^{\gamma} = Cte \iff TV^{\gamma-1} = Cte \iff T^{\gamma}P^{1-\gamma} = Cte$	T = Cte					
ΔU		$C_{v}\left(T_{f}-T_{i}\right)=\frac{nR}{\gamma-1}\left(T_{f}-T_{i}\right)$		0					
ΔН		$C_{P}\left(T_{f}-T_{i}\right)=\frac{nR\gamma}{\gamma-1}\left(T_{f}-T_{i}\right)$	$-T_i$) 0						
W	0	- P (V _f -V _i)	ΔU	$-nRT \ln \left(\frac{V_f}{V_i} \right)$					
Q=ΔU-W	ΔU	ΔΗ	0	- W					
Diagramme De Clapeyron	P_1 P_2 $V = C \text{ st}$	$P = C st$ $V_1 \qquad V_2 \qquad V$	$\begin{array}{c} P \\ P_1 \\ \hline \\ V_1 \\ \hline \\ V_2 \\ \hline \end{array}$ Pente adiabatique > pente isotherme	P_1 P_2 V_1 V_2 V					