Corrigé MINES-PONTS 2004 PC 1

- 1. f est somme d'une série entière de rayon de CV $R \ge 1$; elle est donc de classe C^{∞} sur]-1,1[. Sur [0,1[on a $f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} \ge 0$ car $a_n \ge 0$; de plus $f(x) = \sum_{n=0}^{+\infty} a_n x^n \le \sum_{n=0}^{+\infty} a_n = f(1)$: f est donc croissante sur [0,1]. Sur [0,1[on a $f''(x) = \sum_{n=0}^{+\infty} n(n-1)a_n x^{n-2} \ge 0$: f est donc convexe sur [0,1[.
- **2.** $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ avec convergence normale sur [0,1] puisque $\sum_{n=0}^{+\infty} |a_n|$ converge : f est donc continue sur [0,1].
- 3. G est dans S car $g_n \ge 0$ et $\sum_{n=0}^{+\infty} g_n = \frac{1/2}{1-1/2} = 1$. $\widehat{G}(x) = \sum_{n=0}^{+\infty} \frac{x^n}{2^{n+1}} = \frac{1/2}{1-x/2} = \frac{1}{2-x}$. E^q est trivialement dans S et $\widehat{E}^q(x) = x^q$. V est dans S car $v_n \ge 0$ et $\sum_{n=0}^{+\infty} v_n = 1/2 + \sum_{n=1}^{+\infty} \frac{a}{n^2} = 1/2 + 1/2 = 1$. $\widehat{V}'(x) = \sum_{n=1}^{+\infty} \frac{ax^{n-1}}{n} = -\frac{a \ln(1-x)}{x}$ pour $x \in]-1,1[$. On en déduit sur cet intervalle $\widehat{V}(x) = 1/2 a \int_0^x \frac{\ln(1-t)}{t} dt$.
- **4.** Puisque $a_0 = f(0) = 0$, $f(x) = \sum_{n=1}^{+\infty} a_n x^n \le \sum_{n=1}^{+\infty} a_n x = x$. Il y a deux cas : soit $a_n = 0$ pour tout $n \ge 2$ et alors f(x) = x, soit $a_n > 0$ pour un $n \ge 2$ d'où $a_n x^n < a_n x$ et donc f(x) < x sur]0,1[. Supposons maintenant $a_0 > 0$. Il y a encore deux cas : soit $a_n = 0$ pour tout $n \ge 2$ et alors $f(x) = a_0 + (1-a_0)x > x$ sur [0,1[, soit $a_n > 0$ pour un $n \ge 2$ d'où f''(x) > 0 sur]0,1[: f est strictement convexe, il y a au maximum deux points de la courbe sur la droite y = x; puisque f(1) = 1, il y a au plus un $x \in]0,1[$ tel que f(x) = x.
- **5.** Soit $U \in S$ et f = j(U). Puisque $\sum_{n=0}^{+\infty} |u_n| = 1$, le rayon de convergence de $f(x) = \sum_{n=0}^{+\infty} u_n x^n$ vérifie $R \ge 1$; de plus, $f^{(n)}(0) = u_n n! \ge 0$. f est donc bien dans F. Réciproquement, pour $f \in F$, la suite (a_n) est unique car $a_n = \frac{f^{(n)}(0)}{n!}$; elle est dans S puisque $\sum_{n=0}^{+\infty} a_n = 1$ et $a_n \ge 0$. j est donc bien une bijection de S sur F.
- **6.** On a clairement $w_n \ge 0$. La série de terme général w_n est le produit de Cauchy des séries convergentes de termes généraux positifs u_n et v_n ; elle est donc convergente et sa somme est égale au produit des deux sommes, soit $1 \cdot U * V$ est donc bien dans S.
- 7. La série entière $(\sum w_n x^n)$ est le produit de Cauchy des séries entières $(\sum u_n x^n)$ et $(\sum v_n x^n)$. On a donc j(U*V)=j(U)j(V).
- 8. Utilisons la bijection j^{-1} ; pour f, g dans F, $j^{-1}(fg) = j^{-1}(f) * j^{-1}(g)$; j^{-1} est donc un morphisme de (F, .) sur (S, *). On en déduit que la loi * est associative, commutative et a pour élément neutre $j^{-1}(1) = E^0$.
- 9. B^p est dans S puisque p>0, 1-p>0 et p+(1-p)=1. Γ^p est dans S puisque $(1-p)p^n>0$ et $\sum_{n=0}^{+\infty}(1-p)p^n=\frac{1-p}{1-p}=1$ (série géométrique). Π^λ est dans S puisque $\lambda>0$ et $\sum_{n=0}^{+\infty}\frac{\lambda^n}{n!}\,\mathrm{e}^{-\lambda}=\mathrm{e}^\lambda\mathrm{e}^{-\lambda}=1$.

$$\widehat{B}^{p}(x) = 1 - p + px , \ \widehat{\Gamma}^{p}(x) = \sum_{n=0}^{+\infty} (1 - p)p^{n}x^{n} = \frac{1 - p}{1 - px} \text{ et } \widehat{\Pi}^{\lambda}(x) = \sum_{n=0}^{+\infty} \frac{\lambda^{n}}{n!} e^{-\lambda}x^{n} = e^{\lambda x}e^{-\lambda} = e^{-\lambda(1 - x)}.$$

- **10.** $j(B^{p*q})(x) = (j(B^p)(x))^q = (1 p + px)^q = \sum_{n=0}^q {q \choose n} (1-p)^{q-n} p^n x^n$ donc B^{p*q} a pour terme général $\beta_n^{p*q} = {q \choose n} (1-p)^{q-n} p^n$ pour $n \le q$ et 0 pour n > q.
- $j(\Gamma^{p*q})(x) = (j(\Gamma^p)(x))^q = \left(\frac{1-p}{1-px}\right)^q = (1-p)^q \sum_{n=0}^{+\infty} {\binom{-q}{n}} (-px)^n = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} \text{ a pour } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q \sum_{n=0}^{+\infty} {\binom{n+q-1}{n}} (px)^n \text{ donc } \Gamma^{p*q} = (1-p)^q$
- terme général $\gamma_n^{p*q} = (1-p)^q \binom{n+q-1}{n} p^n$. $j(\Pi^{\lambda*q})(x) = (j(\Pi^{\lambda})(x))^q = (\mathrm{e}^{-\lambda(1-x)})^q = \mathrm{e}^{-\lambda q(1-x)}. \ \Pi^{\lambda*q} = \Pi^{\lambda q} \ \mathrm{a} \ \mathrm{donc} \ \mathrm{pour} \ \mathrm{terme} \ \mathrm{général} \ \pi_n^{\lambda*q} = \frac{(\lambda q)^n}{n!} \ \mathrm{e}^{-\lambda q}.$

- $\mathbf{11.} \ \beta_n^{(\lambda/q)*q} = {q \choose n} \left(1 \frac{\lambda}{q}\right)^{q-n} \left(\frac{\lambda}{q}\right)^n = \frac{q(q-1)...(q-n+1)}{n!} \, \mathrm{e}^{(q-n)\ln(1-\lambda/q)} \, \frac{\lambda^n}{q^n}. \text{ Quand } q \text{ tend vers l'infini,}$ $(q-n)\ln\left(1 \frac{\lambda}{q}\right) \text{ a pour limite } -\lambda \text{ donc } \beta_n^{(\lambda/q)*q} \text{ a pour limite } \frac{\lambda^n}{n!} \, \mathrm{e}^{-\lambda} = \pi_n^{\lambda}.$
- **12.** Puisque $u_n^q \ge 0$, $v_n = \lim_{q \to +\infty} u_n^q \ge 0$. Pour tout N > 0, $\sum_{n=0}^N u_n^q \le \sum_{n=0}^{+\infty} u_n^q = 1$ donc en faisant tendre q vers

l'infini, $\sum_{n=0}^{N} v_n \leq 1$. La série de terme général v_n converge et sa somme est inférieure ou égale à 1.

Si on prend $U^q = \Pi^{1+q}$, on obtient $v_n = \lim_{q \to +\infty} \frac{(1+q)^n}{n!} e^{-(1+q)} = 0$.

- 13. Supposons $r \leq s$; puisque $0 \leq u_n n^r \leq u_n n^s$ la convergence de la série de terme général $u_n n^s$ entraine la convergence de la série de terme général $u_n n^r$; on a donc $S_s \subset S_r$. Par exemple, $S_2 \subset S_1$.
- **14.** φ est clairement symétrique et bilinéaire (pour Y fixé, $X \mapsto \varphi(X,Y)$ est une forme linéaire). De plus, $\varphi(X,X) = \sum_{i=1}^{N} a_i x_i^2 \ge 0$ et n'est nul que si chaque $a_i x_i^2$ est nul soit X=0 puisque $a_i > 0$. φ est donc bien un produit scalaire.
- **15.** Pour U dans S_2 , U est aussi dans S_1 ; donc M(U) existe et V(U) aussi. Appliquons l'inégalité de Cauchy-Schwarz pour le produit scalaire canonique aux vecteurs X et Y de \mathbb{R}^N définis par $x_n = \sqrt{u_n}$ et $y_n = n\sqrt{u_n}$:

$$\left(\sum_{n=1}^N nu_n\right)^2 = (X|Y)^2 \le (X|X)(Y|Y) = \left(\sum_{n=1}^N u_n\right) \left(\sum_{n=1}^N n^2 u_n\right) \le \sum_{n=1}^N n^2 u_n \text{ puisque } \sum_{n=1}^N u_n \le 1. \text{ On en déduit } 1 \le 1 \le N$$

en faisant tendre N vers l'infini : $M(U)^2 \le \sum_{n=1}^{+\infty} n^2 u_n$ donc $V(U) \ge 0$.

- **16.** Pour $x \in [0,1[$ on a $\widehat{U}'(x) = \sum_{n=1}^{+\infty} nu_n x^{n-1}$; puisque $nu_n \geq 0$ et $\sum_{n=1}^{+\infty} nu_n = M(U)$ il y a convergence normale sur [0,1] et donc \widehat{U}' est continue sur $[0,1]:\widehat{U}'(1)=M(U)$. De même, pour $x \in [0,1[$ on a $\widehat{U}''(x) = \sum_{n=1}^{+\infty} n(n-1)u_n x^{n-2}$; puisque $n(n-1)u_n \geq 0$ et $\sum_{n=1}^{+\infty} n(n-1)u_n = V(U) + M(U)^2 M(U)$ il y a convergence normale sur [0,1] et donc \widehat{U}'' est continue sur $[0,1]:\widehat{U}''(1)=V(U)+M(U)^2-M(U)$.
- **17.** Soit la fonction g définie par $g(x) = \widehat{U}(x) 1 \widehat{U}'(1)(x-1) \frac{1}{2}\widehat{U}''(1)(x-1)^2$; g est de classe C^2 sur $[0,1],\ g'(x) = \widehat{U}'(x) \widehat{U}'(1) \widehat{U}''(1)(x-1)$ et $g''(x) = \widehat{U}''(x) \widehat{U}''(1)$. On vérifie g(1) = 0, g'(1) = 0 et $|g''(t)| = \widehat{U}''(1) \widehat{U}''(t) \le \widehat{U}''(1) \widehat{U}''(x) = \varepsilon(x)$ puisque $\widehat{U}''(x) = \sum_{n=2}^{+\infty} n(n-1)u_n x^{n-2} \le \sum_{n=2}^{+\infty} n(n-1)u_n t^{n-2} = 0$

 $\widehat{U}''(t) \le \sum_{n=2}^{+\infty} n(n-1)u_n = \widehat{U}''(1)$ pour 0 < x < t < 1. On obtient par l'inégalité de Taylor-Lagrange à l'ordre 1

appliquée à la fonction g sur l'intervalle $[x,1]:|g(x)|\leq \frac{1}{2}(x-1)^2\sup_{t\in[x,1]}|g''(t)|\leq \frac{1}{2}(x-1)^2\varepsilon(x)$.

- **18.** La suite B^p est dans S_2 puisque $\beta_n^p = 0$ pour $n \ge 2$. Γ^p est dans S_2 puisque $n^2 \gamma_n^p = n^2 (1-p) p^n = o(1/n^2)$. Π^{λ} est dans S_2 puisque $n^2 \pi_n^{\lambda} = n^2 \frac{\lambda^n}{n!} e^{-\lambda} = o(1/n^2)$.
- **19.** On calcule immédiatement : $M(B^p) = p$ et $V(B^p) = p p^2$.

Pour
$$U = \Gamma^p$$
, $\widehat{U}(x) = \frac{1-p}{1-px}$ donc $\widehat{U}'(x) = \frac{p(1-p)}{(1-px)^2}$ et $M(\Gamma^p) = \widehat{U}'(1) = \frac{p(1-p)}{(1-p)^2} = \frac{p}{1-p}$.

$$\widehat{U}''(x) = \frac{2p^2(1-p)}{(1-px)^3} \text{ d'où } V(\Gamma^p) = \widehat{U}''(1) + M(\Gamma^p) - M(\Gamma^p)^2 = \frac{2p^2(1-p)}{(1-p)^3} + \frac{p}{1-p} - (\frac{p}{1-p})^2 = \frac{p}{(1-p)^2}.$$

Pour $U = \Pi^{\lambda}$, $\widehat{U}(x) = e^{-\lambda(1-x)}$ donc $\widehat{U}'(x) = \lambda e^{-\lambda(1-x)}$ et $\widehat{U}'(x) = \lambda^2 e^{-\lambda(1-x)}$. On en déduit $M(\Pi^{\lambda}) = \widehat{U}'(1) = \lambda$ et $V(\Pi^{\lambda}) = \widehat{U}''(1) + M(\Pi^{\lambda}) - M(\Pi^{\lambda})^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$