Concours National Commun Session 2016 Filière PSI

Épreuve de Mathématiques I: Un corrigé 1

Problème 1

Partie I

Convergence des séries par transformation d'Abel

1. (a) Soit
$$k \in \mathbb{N}^*$$
. On a $B_k = \sum_{j=0}^n b_j = \sum_{j=0}^{n-1} b_j + b_k = B_{k-1} + b_k$, donc $b_k = B_k - B_{k-1}$.

(b) Soit $n \in \mathbb{N}^*$. On a

$$\begin{split} S_n &=& \sum_{k=0}^n a_k b_k = a_0 b_0 + \sum_{k=1}^n a_k b_k \\ &=& a_0 b_0 + \sum_{k=1}^n a_k (B_k - B_{k-1}) \quad \text{d'après la question précédente} \\ &=& a_0 b_0 + \sum_{k=1}^n a_k B_k - \sum_{k=1}^n a_k B_{k-1} \\ &=& a_0 b_0 + a_n B_n + \sum_{k=1}^{n-1} a_k B_k - \sum_{k=1}^n a_k B_{k-1} \\ &=& a_0 b_0 + a_n B_n + \sum_{k=1}^{n-1} a_k B_k - \sum_{j=0}^n a_{j+1} B_j \quad \text{on a effectu\'e le changement d'indice } j = k-1 \\ &=& a_n B_n + a_0 B_0 + \sum_{k=1}^{n-1} a_k B_k - \sum_{k=0}^{n-1} a_{k+1} B_k \quad \text{car } B_0 = b_0 \\ &=& a_n B_n + \sum_{k=0}^{n-1} a_k B_k - \sum_{k=0}^{n-1} a_{k+1} B_k \\ &=& a_n B_n + \sum_{k=0}^{n-1} a_k B_k - \sum_{k=0}^{n-1} a_{k+1} B_k \\ &=& a_n B_n + \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k. \end{split}$$

2. (a) Pour tout
$$n \in \mathbb{N}$$
, on a $\sum_{k=0}^{n} (a_k - a_{k+1}) = a_0 - a_{n+1} \xrightarrow[n \to +\infty]{} a_0$, donc a_0 la série $\sum_{n \geq 0} (a_n - a_{n+1})$ est convergente et $\sum_{n=0}^{+\infty} (a_n - a_{n+1}) = a_0$.

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n u_k,$$

est convergente. Dans ce cas : $\sum_{n=0}^{+\infty}u_n=\lim_{n\to+\infty}\sum_{k=0}^nu_k.$

^{1.} Ce corrigé est proposé par Adham Elbekkali, professeur de mathématiques de la classe PCSI 2 au CPGE de Tanger

^{2.} Définition : Soit $\sum u_n$ une série numérique. On dit que la série $\sum u_n$ est convergente, si la suite (S_n) des sommes partielles, définie par

(b) Pour monter que la série $\sum_{n\geq 0} a_n b_n$ est convergente, alors, par définition de la convergence d'une série, il suffit qu'on montre que la suite (S_n) de ses sommes partielles est convergente. Or, d'après la question **I.1.b**, on a

$$\forall n \in \mathbb{N}, \ S_n = a_n B_n + \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k,$$

alors il suffit qu'on montre que les suites (a_nB_n) et $\left(\sum_{k=0}^{n-1}(a_k-a_{k+1})B_k\right)$ sont convergentes.

- ▶ On a $a_n \xrightarrow[n \to +\infty]{} 0$ et la suite (B_n) est bornée, donc $a_n B_n \xrightarrow[n \to +\infty]{} 0$, ainsi la suite $(a_n B_n)$ est convergente.
- ▶ La suite (B_n) est bornée, donc $B_n = O(1)$, par suite $(a_n a_{n+1})B_n = O(a_n a_{n+1})$ et comme la série $\sum_{n>0} (a_n a_{n+1})$ est convergente d'après **I.2.b**, alors la série $\sum_{n>0} (a_n a_{n+1})B_n$ est aussi convergente,

du coup la suite des sommes partielles $\left(\sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k\right)$ est convergente.

Donc la série $\sum_{n\geq 0} a_n b_n$ est convergente.

Partie II

Applications aux convergences de quelques types de séries

- 1. Pour tout $n \in \mathbb{N}$, on pose $b_n = (-1)^n$ et $B_n = \sum_{k=0}^n b_k$, donc pour tout $n \in \mathbb{N}$, on a $B_n = \sum_{k=0}^n b_k = \sum_{k=0}^n (-1)^k = \frac{1-(-1)^{n+1}}{2} \in \{0,1\}$, du coup la suite (B_n) est bornée, et comme la suite (a_n) est décroissante de limite nulle, alors, d'après la question **I.2.b**, la série $\sum_{n\geq 0} a_n b_n = \sum_{n\geq 0} (-1)^n a_n$ est convergente.
- **2.** (a) Soit $n \in \mathbb{N}^*$. On a θ est différent de $2k\pi$ $(k \in \mathbb{Z})$, donc $e^{i\theta}$ est différent de 1 puis

$$\sum_{k=1}^n \mathrm{e}^{ik\theta} = \sum_{k=1}^n \left(\mathrm{e}^{i\theta} \right)^k = \mathrm{e}^{i\theta} \times \frac{1 - \left(\mathrm{e}^{i\theta} \right)^n}{1 - \mathrm{e}^{i\theta}} = \mathrm{e}^{i\theta} \times \frac{1 - \mathrm{e}^{in\theta}}{1 - \mathrm{e}^{i\theta}} = \mathrm{e}^{i\frac{n+1}{2}\theta} \times \frac{\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}.$$

- (b) Soit $\alpha \leq 0$, on a $\left| \frac{\mathrm{e}^{i n \theta}}{n^{\alpha}} \right| = \frac{1}{n^{\alpha}} \not\xrightarrow[n \to +\infty]{} 0$, donc $\frac{\mathrm{e}^{i n \theta}}{n^{\alpha}} \not\xrightarrow[n \to +\infty]{} 0$, dès lors la série $\sum_{n \geq 1} \frac{\mathrm{e}^{i n \theta}}{n^{\alpha}}$ diverge grossièrement.
- (c) Soit $\alpha > 0$. Pour tout $n \in \mathbb{N}^*$, on pose $a_n = \frac{1}{n^{\alpha}}$, $b_n = e^{in\theta}$ et $B_n = \sum_{k=1}^n b_k$. D'après la question **I.2.a**, on a

$$\forall n \in \mathbb{N}^*, \ |B_n| = \left| \sum_{k=1}^n b_k \right| = \left| \sum_{k=1}^n e^{ik\theta} \right| = \left| e^{i\frac{n+1}{2}\theta} \times \frac{\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \right| \le \frac{1}{\left|\sin\left(\frac{\theta}{2}\right)\right|},$$

donc la suite (B_n) est bornée, et comme la suite (a_n) est décroissante de limite nulle, alors, d'après la question **I.2.b**, la série $\sum_{n\geq 1} a_n B_n = \sum_{n\geq 1} \frac{\mathrm{e}^{in\theta}}{n^{\alpha}}$ est convergente. Il en résulte que les séries $\sum_{n\geq 1} \mathrm{Re}\left(\frac{\mathrm{e}^{in\theta}}{n^{\alpha}}\right) = \sum_{n\geq 1} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n\geq 1} \mathrm{Im}\left(\frac{\mathrm{e}^{in\theta}}{n^{\alpha}}\right) = \sum_{n\geq 1} \frac{\sin(n\theta)}{n^{\alpha}}$ sont aussi convergentes.

(d) Soit
$$\alpha > 1$$
. On a

$$\forall n \in \mathbb{N}^*, \quad \left| \frac{\cos(n\theta)}{n^{\alpha}} \right| \le \frac{1}{n^{\alpha}} \quad \text{ et } \quad \left| \frac{\sin(n\theta)}{n^{\alpha}} \right| \le \frac{1}{n^{\alpha}}$$

et, comme la série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ est convergente, alors les séries $\sum_{n\geq 1} \left| \frac{\cos(n\theta)}{n^{\alpha}} \right|$ et $\sum_{n\geq 1} \left| \frac{\sin(n\theta)}{n^{\alpha}} \right|$ sont convergentes et par suite les séries $\sum_{n\geq 1} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n\geq 1} \frac{\sin(n\theta)}{n^{\alpha}}$ sont absolument convergentes.

- (e) (i) On a θ est différent de $2k\pi$ ($k \in \mathbb{Z}$), donc 2θ est aussi différent de $2k\pi$ et, comme $\alpha > 0$, alors, d'après la question II.2.c, la série $\sum_{n \geq 1} \frac{\cos(n2\theta)}{n^{\alpha}}$ est convergente.
 - (ii) On a

$$\forall n \in \mathbb{N}^*, \quad \frac{\sin^2(n\theta)}{n^{\alpha}} = \frac{1 - \cos(2n\theta)}{2n^{\alpha}} = \frac{1}{2n^{\alpha}} - \frac{\cos(2n\theta)}{2n^{\alpha}},$$

la série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ est divergente $(\alpha < 1)$ et la série $\sum_{n\geq 1} \frac{\cos(2n\theta)}{n^{\alpha}}$ est convergente d'après la question précédente, donc la série $\sum_{n\geq 1} \frac{\sin^2(n\theta)}{n^{\alpha}}$ est divergente en tant que somme d'une série convergente et d'une série divergente.

- (iii) Soit $n \in \mathbb{N}^*$. On a $|\sin(n\theta)| \ge \sin^2(n\theta)$, donc $\frac{|\sin(n\theta)|}{n^{\alpha}} \ge \frac{\sin^2(n\theta)}{n^{\alpha}}$ et, comme la série $\sum_{n\ge 1} \frac{\sin^2(n\theta)}{n^{\alpha}}$ est divergente d'après la question précédente, alors la série $\sum_{n\le 1} \frac{|\sin(n\theta)|}{n^{\alpha}}$ est aussi divergente, ainsi la série $\sum_{n\ge 1} \frac{\sin(n\theta)}{n^{\alpha}}$ n'est pas absolument convergente.
- 3. Posons, pour tout $n \in \mathbb{N}^*$, $a_n = \frac{1}{n^{\alpha}}$ et $B_n = \sum_{k=1}^n c_k$. La série $\sum_{n\geq 1} c_n$ étant convergente, donc la suite des sommes partielles $(B_n)_{n\geq 1}$ est convergente et par conséquent elle est bornée et, comme la suite $(a_n)_{n\geq 1}$ est décroissante de limite nulle, alors, d'après la question I.2.b, la série $\sum_{n\geq 1} a_n c_n = \sum_{n\geq 1} \frac{c_n}{n^{\alpha}}$ est convergente.

Partie III

Une autre méthode pour montrer la convergence de quelques types de séries

1. Soit $s \in \mathbb{R}_+^*$.

La fonction $t \mapsto e^{-st} f(t)$ est continue sur $[0, +\infty[$ en tant que produit de deux fonctions continues sur $[0, +\infty[$, donc l'intégrale $\int_0^{+\infty} e^{-st} f(t) dt$ est impropres en $+\infty$.

La fonction f est décroissante et minorée (car elle positive), donc, d'après le théorème de la limite monotone, elle admet une limite finie en $+\infty$, du coup $t^2 e^{-st} f(t) = \frac{e^{-st} f(t)}{1/t^2} \xrightarrow[t \to +\infty]{} 0$ et par suite $e^{-st} f(t) = o\left(\frac{1}{t^2}\right)$. Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ est convergente, alors $\int_0^{+\infty} e^{-st} f(t) dt$ est convergente. Ainsi $\varphi_f(s)$ est bien définie

pour tout $s \in \mathbb{R}_+^*$.

2. La fonction g est définie, continue, positive et décroissante sur \mathbb{R}^+ , donc, d'après la question précédente, φ_g est

définie sur \mathbb{R}_+^* et on a

$$\forall s \in \mathbb{R}_{+}^{*}, \ \varphi_{g}(s) = \int_{0}^{+\infty} e^{-st} g(t) dt = \int_{0}^{1} e^{-st} g(t) dt + \int_{1}^{+\infty} e^{-st} g(t) dt = \int_{0}^{1} e^{-st} (1-t) dt$$

$$\stackrel{\text{IPP}}{=} \left[-\frac{e^{-st} (1-t)}{s} \right]_{t=0}^{t=1} - \int_{0}^{1} \frac{e^{-st} dt}{s} = \frac{1}{s} - \left[-\frac{e^{-st}}{s^{2}} \right]_{t=0}^{t=1} = \frac{1}{s} + \frac{1}{s^{2}} (e^{-s} - 1).$$

3. Soit $k \in \mathbb{N}$.

Les fonctions f et $t \mapsto e^{-st}$ sont décroissantes, donc

$$\forall t \in [k, k+1], \ f(k+1) \le f(t) \le f(k) \quad \text{et} \quad e^{-(k+1)s} \le e^{-ts} \le e^{-ks}$$

d'où

$$\forall t \in [k, k+1], e^{-(k+1)s} f(k+1) \le e^{-ts} f(t) \le e^{-ks} f(k),$$

alors, par croissance de l'intégrale, obtient

$$\int_{k}^{k+1} e^{-(k+1)s} f(k+1) dt \le \int_{k}^{k+1} e^{-ts} f(t) dt \le \int_{k}^{k+1} e^{-ks} f(k) dt,$$

c.à.d.

$$e^{-(k+1)s}f(k+1) \le \int_{k}^{k+1} e^{-ts}f(t) dt \le e^{-ks}f(k).$$

4. Soient $N \in \mathbb{N}^*$ et $s \in \mathbb{R}_+^*$.

D'après la question précédente, on a

$$\forall k \in [0, N-1], \ e^{-(k+1)s} f(k+1) \le \int_{k}^{k+1} e^{-ts} f(t) dt \le e^{-ks} f(k),$$

donc

$$\sum_{k=0}^{N-1} e^{-(k+1)s} f(k+1) \le \sum_{k=0}^{N-1} \int_{k}^{k+1} e^{-ts} f(t) dt \le \sum_{k=0}^{N-1} e^{-ks} f(k).$$

En effectuant le changement d'indice j = k + 1 dans l'expression du premier membre de l'inégalité précédente et en appliquent la relation de Chasles dans l'expression du deuxième membre de l'inégalité précédente, on obtient :

$$\sum_{j=1}^{N} e^{-js} f(j) \le \int_{0}^{N} e^{-ts} f(t) dt \le \sum_{k=0}^{N-1} e^{-ks} f(k),$$

c.à.d.

$$\sum_{k=1}^{N} e^{-ks} f(k) \le \int_{0}^{N} e^{-ts} f(t) dt \le \sum_{k=0}^{N-1} e^{-ks} f(k),$$

c.à.d.

$$\sum_{k=1}^{N} e^{-ks} f(k) \le \int_{0}^{N} e^{-ts} f(t) dt \quad \text{ et } \quad \int_{0}^{N} e^{-ts} f(t) dt \le \sum_{k=0}^{N-1} e^{-ks} f(k),$$

$$\text{et, comme } \sum_{k=1}^{N} \mathrm{e}^{-ks} f(k) = \sum_{k=0}^{N} \mathrm{e}^{-ks} f(k) - f(0) \text{ et } \sum_{k=0}^{N-1} \mathrm{e}^{-ks} f(k) \leq \sum_{k=0}^{N-1} \mathrm{e}^{-ks} f(k) + \mathrm{e}^{-Ns} f(N) = \sum_{k=0}^{N} \mathrm{e}^{-ks} f(k), \text{ il vient } f(k) = \sum_{k=0}^{N} \mathrm{e}^{-ks} f(k) + \mathrm{e}^{-Ns} f(k) = \sum_{k=0}^{N} \mathrm{e}^{-Ns} f(k) + \mathrm{e}^{-Ns} f(k) = \sum$$

$$\sum_{k=0}^{N} e^{-ks} f(k) - f(0) \le \int_{0}^{N} e^{-ts} f(t) dt \quad \text{et} \quad \int_{0}^{N} e^{-ts} f(t) dt \le \sum_{k=0}^{N} e^{-ks} f(k),$$

par conséquent

$$\forall N \in \mathbb{N}^*, \quad \int_0^N e^{-ts} f(t) dt \le \sum_{k=0}^N e^{-ks} f(k) \le \int_0^N e^{-ts} f(t) dt + f(0),$$

et on voit que l'inégalité est encore valable pour N=0. Finalement

$$\forall N \in \mathbb{N}, \quad \int_0^N e^{-ts} f(t) dt \le \sum_{k=0}^N e^{-ks} f(k) \le \int_0^N e^{-ts} f(t) dt + f(0).$$

5. La série $\sum_{n\geq 0} \mathrm{e}^{-ns} f(n)$ est à termes positifs, donc ³, pour montrer qu'elle est convergente, il suffit qu'on montre que la suite de ses sommes partielles est majorée. D'après la question précédente, on a

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} e^{-ks} f(k) \le \int_{0}^{n} e^{-ts} f(t) dt + f(0) \le \int_{0}^{+\infty} e^{-ts} f(t) dt + f(0),$$

donc la suite des sommes partielles de la série $\sum_{n\geq 0} \mathrm{e}^{-ns} f(n)$ est majorée et par conséquent la série $\sum_{n\geq 0} \mathrm{e}^{-ns} f(n)$ est convergente.

6. Soient $s \in \mathbb{R}_+^*$ et $n, N \in \mathbb{N}^*$ tels que $n \leq N$. D'après la question **III.3**, on a

$$\forall k \in [n, N], \ e^{-(k+1)s} f(k+1) \le \int_k^{k+1} e^{-ts} f(t) dt \le e^{-ks} f(k),$$

donc

$$\sum_{k=n}^{N} e^{-(k+1)s} f(k+1) \le \sum_{k=n}^{N} \int_{k}^{k+1} e^{-ts} f(t) dt \le \sum_{k=n}^{N} e^{-ks} f(k).$$

En effectuant le changement d'indice j = k + 1 dans l'expression du premier membre de l'inégalité précédente et en appliquent la relation de Chasles dans l'expression du deuxième membre de l'inégalité précédente, on obtient

$$\sum_{j=n+1}^{N+1} e^{-js} f(j) \le \int_{n}^{N+1} e^{-ts} f(t) dt \le \sum_{k=n}^{N} e^{-ks} f(k),$$

c.à.d.

$$\sum_{k=n+1}^{N+1} e^{-ks} f(k) \le \int_{n}^{N+1} e^{-ts} f(t) dt \le \sum_{k=n}^{N} e^{-ks} f(k).$$

En faisant tendre $N \longrightarrow +\infty$, on obtient

$$\sum_{k=n+1}^{+\infty} e^{-ks} f(k) \le \int_{n}^{+\infty} e^{-ts} f(t) dt \le \sum_{k=n}^{+\infty} e^{-ks} f(k),$$

c.à.d.

$$\sum_{k=n+1}^{+\infty} e^{-ks} f(k) \le \int_{n}^{+\infty} e^{-ts} f(t) dt \quad \text{ et } \quad \int_{n}^{+\infty} e^{-ts} f(t) dt \le \sum_{k=n}^{+\infty} e^{-ks} f(k),$$

3. Soit $\sum_{n>0} u_n$ une série à termes positifs. Alors :

$$\sum_{n\geq 0}u_n \text{ converge} \iff \text{la suite de ses sommes partielles est majorée} \iff \exists M\geq 0 : \forall n\in\mathbb{N}, \ \sum_{k=0}^nu_k\leq M.$$

donc

$$\sum_{k=n+1}^{+\infty} e^{-ks} f(k) \le \int_{n}^{+\infty} e^{-ts} f(t) dt \quad \text{ et } \quad \int_{n+1}^{+\infty} e^{-ts} f(t) dt \le \sum_{k=n+1}^{+\infty} e^{-ks} f(k),$$

ainsi

$$\int_{n+1}^{+\infty} e^{-ts} f(t) dt \le \sum_{k=n+1}^{+\infty} e^{-ks} f(k) \le \int_{n}^{+\infty} e^{-ts} f(t) dt.$$

7. (a) Soient $n \in \mathbb{N}$ et $(s, s') \in \mathbb{R}_+^* \times \mathbb{R}_+^*$.

On considère la fonction f définie sur \mathbb{R}_+ par

$$\forall t \in \mathbb{R}_+, \quad f(t) = \frac{1}{1 + e^{ts'}}.$$

On voit que la fonction f est continue, positive et décroissante, donc, d'après la question précédente, on a

$$\int_{n+1}^{+\infty} e^{-ts} f(t) dt \le \sum_{k=n+1}^{+\infty} e^{-ks} f(k) \le \int_{n}^{+\infty} e^{-ts} f(t) dt,$$

c.à.d.

$$\int_{n+1}^{+\infty} \frac{e^{-ts}}{1 + e^{ts'}} dt \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks'}} \le \int_{n}^{+\infty} \frac{e^{-ts}}{1 + e^{ts'}} dt.$$

(b) Soient $s \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. En prenant s' = s dans la question précédente, on obtient

$$\int_{n+1}^{+\infty} \frac{e^{-ts}}{1 + e^{ts}} dt \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \le \int_{n}^{+\infty} \frac{e^{-ts}}{1 + e^{ts}} dt.$$

On a

$$\int_{n}^{+\infty} \frac{e^{-ts}}{1 + e^{ts}} dt = \int_{n}^{+\infty} \frac{e^{-ts}}{e^{ts}(e^{-ts} + 1)} dt = \int_{n}^{+\infty} \frac{\left(e^{-ts}\right)^{2}}{e^{-ts} + 1} dt$$

$$= \int_{n}^{+\infty} \frac{\left(e^{-ts}\right)^{2} + e^{-ts} - e^{-ts}}{e^{-ts} + 1} dt = \int_{n}^{+\infty} e^{-ts} - \frac{e^{-ts}}{e^{-ts} + 1} dt$$

$$= \left[-\frac{e^{-ts}}{s} + \frac{\ln(1 + e^{-ts})}{s} \right]_{t=n}^{t \to +\infty} = \frac{1}{s} \left(e^{-ns} - \ln(1 + e^{-ns}) \right)$$

et en remplaçant n par n+1, on obtient $\int_{n+1}^{+\infty} \frac{\mathrm{e}^{-ts}}{1+\mathrm{e}^{ts}} \, \mathrm{d}t = \frac{1}{s} \left(\mathrm{e}^{-(n+1)s} - \ln(1+\mathrm{e}^{-(n+1)s}) \right).$ D'où la double inégalité

$$\frac{1}{s} \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \le \frac{1}{s} \left(e^{-ns} - \ln(1 + e^{-ns}) \right).$$

(c) D'après la question précédente, on a

$$\forall s > 0, \quad \frac{1}{s} \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \le \frac{1}{s} \left(e^{-ns} - \ln(1 + e^{-ns}) \right)$$

et, comme $\lim_{s \to +\infty} \frac{1}{s} \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) = \lim_{s \to +\infty} \frac{1}{s} \left(e^{-ns} - \ln(1 + e^{-ns}) \right) = 0$, alors, d'après le théorème des gendarmes, $\lim_{s \to +\infty} \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} = 0$.

(d) D'après la question III.7.b, on a

$$\forall s > 0, \quad \frac{1}{s} \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \le \frac{1}{s} \left(e^{-ns} - \ln(1 + e^{-ns}) \right),$$

donc

$$\forall s > 0, \quad \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) \le s \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \le \left(e^{-ns} - \ln(1 + e^{-ns}) \right),$$

et, comme $\lim_{s \to 0^+} \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) = \lim_{s \to 0^+} \left(e^{-ns} - \ln(1 + e^{-ns}) \right) = 1 - \ln 2$, alors, d'après le théo-

rème des gendarmes, $\lim_{s\to 0^+} s \sum_{k=n+1}^{+\infty} \frac{\mathrm{e}^{-ks}}{1+\mathrm{e}^{ks}} = 1 - \ln 2$, d'où $s \sum_{k=n+1}^{+\infty} \frac{\mathrm{e}^{-ks}}{1+\mathrm{e}^{ks}} \underset{s\to 0^+}{\sim} 1 - \ln 2$ et par suite

$$\sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \underset{s \to 0^+}{\sim} \frac{1 - \ln 2}{s}.$$

8. Considérons la fonction g définie sur \mathbb{R}_+ par

$$\forall t \in \mathbb{R}_+, \quad g(t) = f(e^{-t}).$$

- \blacktriangleright La fonction f est positive, donc la fonction g est aussi positive.
- ▶ La fonction $t \mapsto e^{-t}$ est continue sur \mathbb{R}_+ à valeur dans \mathbb{R}_+ et la fonction g est continue sur \mathbb{R}_+ , donc, par composition, la fonction g est continue sur \mathbb{R}_+ .
- ▶ Pour tout $t, t' \in \mathbb{R}$, on a

$$t \le t' \Longrightarrow -t' \le t$$

 $\Longrightarrow e^{-t'} \le e^{-t}$ car la fonction exp est croissante
 $\Longrightarrow f(e^{-t'}) \le f(e^{-t})$, car la fonction f est croissante

donc la fonction g est décroissante.

- (a) Soit $s \in \mathbb{R}^*$. Puisque la fonction g est continue, positive, décroissante et $s^2 \in \mathbb{R}_+^*$, alors, d'après la question III.1, l'intégrale $\int_0^{+\infty} e^{-s^2t} g(t) dt = \int_0^{+\infty} e^{-s^2t} f(e^{-t}) dt$ converge.
- (b) Soit $s \in \mathbb{R}^*$. Puisque la fonction g est continue, positive, décroissante et $s^2 \in \mathbb{R}_+^*$, alors, d'après la question III.4, on a

$$\forall N \in \mathbb{N}, \quad \int_0^N e^{-ts^2} g(t) dt \le \sum_{k=0}^N e^{-ks^2} g(k) \le \int_0^N e^{-ts^2} g(t) dt + g(0).$$

En faisant tendre $N \longrightarrow +\infty$, on obtient

$$\int_0^{+\infty} e^{-ts^2} g(t) dt \le \sum_{k=0}^{+\infty} e^{-ks^2} g(k) \le \int_0^{+\infty} e^{-ts^2} g(t) dt + g(0),$$

c.à.d.

$$\int_0^{+\infty} e^{-ts^2} f(e^{-t}) dt \le \sum_{k=0}^{+\infty} e^{-ks^2} f(e^{-k}) \le \int_0^{+\infty} e^{-ts^2} f(e^{-t}) dt + f(1),$$

par conséquent

$$0 \le \sum_{k=0}^{+\infty} e^{-ks^2} f(e^{-k}) - \int_0^{+\infty} e^{-ts^2} f(e^{-t}) dt \le f(1).$$

Problème 2

Partie I

Cas particulier : variables aléatoires discrètes finies

1. La variable aléatoire Z suit une loi de Bernoulli de paramètre p, donc

$$Z(\Omega) = \{0, 1\}, \quad P(Z = 1) = p \quad \text{ et } \quad P(Z = 0) = 1 - p$$

d'où, d'après le théorème de transfert pour les v.a. finie ⁴

$$\forall t \in \mathbb{R}, \quad M_Z = E(e^{tZ}) = \sum_{z \in Z(\Omega)} e^{tz} P(Z = z) = e^{t \times 0} P(Z = 0) + e^{t \times 1} P(Z = 1) = 1 - p + p e^t$$

2. Soit $t \in \mathbb{R}$. D'après le théorème de transfert pour les v.a finie, on a

$$M_X(t) = E(e^{tX}) = \sum_{x \in X(\Omega)} e^{tx} P(Z = x) = \sum_{k=1}^{r} e^{tx_k} P(Z = x_k)$$

$$= \sum_{k=1}^{r} \left(\sum_{n=0}^{+\infty} \frac{(tx_k)^n}{n!} \right) P(Z = x_k) = \sum_{n=0}^{+\infty} \left(\sum_{k=1}^{r} \frac{(tx_k)^n}{n!} P(Z = x_k) \right)$$

$$= \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=1}^{r} x_k^n P(Z = x_k) \right) t^n = \sum_{n=0}^{+\infty} \frac{E(X^n)}{n!} t^n,$$

donc M_X est développable en série entière sur \mathbb{R} , ce qui implique que la fonction M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} et que :

$$\forall n \in \mathbb{N}, \quad \frac{M_X^{(n)}(0)}{n!} = \frac{E(X^n)}{n!},$$

c.à.d.

$$\forall n \in \mathbb{N}, \quad M_X^{(n)}(0) = E(X^n).$$

Autre méthode : pour les élèves de première année.

D'après le théorème de transfert pour les v.a. finie, on a

$$\forall t \in \mathbb{R}, \quad M_X(t) = E(e^{tX}) = \sum_{x \in X(\Omega)} e^{tx} P(Z = x) = \sum_{k=1}^r e^{tx_k} P(Z = x_k),$$

donc la fonction M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} en tant que combinaison linéaire (ou somme) de fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} .

Soit $n \in \mathbb{N}$. La fonction M_X est de classe \mathbb{C}^n sur \mathbb{R} , donc, d'après la formule de Taylor-Young, on a

$$M_X(t) \underset{t \to 0}{=} \sum_{k=0}^{n} \frac{M_X^{(k)}(0)}{k!} t^k + o(t^n) \underset{t \to 0}{=} \frac{M_X^{(0)}(0)}{0!} t^0 + \frac{M_X^{(1)}(0)}{1!} t + \dots + \frac{M_X^{(n)}(0)}{n!} t^n + o(t^n).$$

$$E(f(X)) = \sum_{k=1}^{n} f(x_k) P(X = x_k) = \sum_{x \in X(\Omega)} f(x) P(X = x).$$

^{4.} Théorème de transfert pour les v.a. finie : Soit X une v.a. finie et $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction. Si $X(\Omega) = \{x_1, \dots, x_n\}$, alors Y = f(X) est aussi une v.a. finie et :

Par ailleurs, on a

$$M_{X}(t) = \sum_{k=1}^{r} e^{tx_{k}} P(Z = x_{k})$$

$$= \sum_{k=1}^{r} P(X = x_{k}) \left(\sum_{j=0}^{n} \frac{(tx_{k})^{j}}{j!} + o(t^{n}) \right)$$

$$= \sum_{k=1}^{r} \sum_{j=0}^{n} P(X = x_{k}) \frac{(tx_{k})^{j}}{j!} + o(t^{n})$$

$$= \sum_{k=1}^{r} \sum_{j=0}^{n} P(X = x_{k}) \frac{(tx_{k})^{j}}{j!} + o(t^{n})$$

$$= \sum_{k=1}^{r} \sum_{j=0}^{r} P(X = x_{k}) \frac{(tx_{k})^{j}}{j!} + o(t^{n})$$

$$= \sum_{k=1}^{r} \sum_{j=0}^{r} \frac{t^{j}}{j!} \left(\sum_{k=1}^{n} P(X = x_{k}) x_{k}^{j} \right) + o(t^{n})$$

$$= \sum_{k=1}^{r} \sum_{j=0}^{r} \frac{E(X^{j})}{j!} t^{j} + o(t^{n})$$

$$= \sum_{k=1}^{r} \frac{E(X^{0})}{0!} t^{0} + \frac{E(X)}{1!} t + \dots + \frac{E(X^{n})}{n!} t^{n} + o(t^{n}),$$

donc grâce à unicité des coefficients d'un développement limité, on obtient

$$\forall n \in \mathbb{N}, \quad M_X^{(n)}(0) = E(X^n).$$

3. (a) • On a $\sum_{k=1}^{r} p_k = 1$, donc p_1, \ldots, p_r ne sont pas tous nuls, d'où l'existence de $k_0 \in [\![1,r]\!]$ tel que $p_{k_0} \neq 0$, or $p_k \geq 0$ pour tout $k \in [\![1,r]\!]$, alors

$$\forall t \in \mathbb{R}, \ M_X(t) = E(e^{tX}) = \sum_{k=1}^r p_k e^{tx_k} \ge p_{k_0} e^{tx_{k_0}} > 0.$$

Ainsi la fonction $t \mapsto \ln(M_X(t))$ est définie sur \mathbb{R} et par suite la fonction $\varphi_X : t \mapsto \frac{1}{t} \ln(M_X(t))$ est définie sur \mathbb{R}^* .

• Pour tout $t \neq 0$, on a

$$\begin{split} \varphi_X(t) &= \frac{1}{t} \ln(M_X(t)) \\ &= \frac{1}{t} \ln(M_X(0) + M_X'(0)t + \mathrm{o}(t)) \quad \text{d'après la formule de Taylor-Young} \\ &= \frac{1}{t} \ln(1 + E(X)t + \mathrm{o}(t)) \quad \text{d'après la question } \mathbf{I.2} \\ &= \frac{1}{t} (E(X)t + \mathrm{o}(t)) \\ &= E(X) + \mathrm{o}(1) \xrightarrow[t \to 0]{} E(X), \end{split}$$

donc φ_X est prolongeable par continuité en 0 et $\varphi_X(0) = E(X)$.

(b) Pour tout $t \neq 0$, on a

$$\frac{\varphi_X(t) - \varphi_X(0)}{t - 0} = \frac{1}{t} \left[\frac{1}{t} \ln(M_X(t)) - E(X) \right]$$

$$= \frac{1}{t^{-0}} \left[\frac{1}{t} \ln\left(M_X(0) + M_X'(0)t + \frac{M_X''(0)}{2}t^2 + o(t^2)\right) - E(X) \right]$$

$$= \frac{1}{t^{-0}} \left[\frac{1}{t} \ln\left(1 + E(X)t + \frac{E(X^2)}{2}t^2 + o(t^2)\right) - E(X) \right]$$

$$= \frac{1}{t^{-0}} \left[\frac{1}{t} \left(\left(E(X)t + \frac{E(X^2)}{2}t^2\right) - \frac{1}{2}\left(E(X)t + \frac{E(X^2)}{2}t^2\right)^2 + o(t^2)\right) - E(X) \right]$$

$$= \frac{1}{t^{-0}} \left[\frac{1}{t} \left(E(X)t + \frac{E(X^2)}{2}t^2 - \frac{1}{2}E(X)^2t^2 + o(t^2)\right) - E(X) \right]$$

$$= \frac{1}{t^{-0}} \left[(E(X^2) - E(X)^2) + o(1) \right]$$

$$= \frac{1}{t^{-0}} \left[(E(X^2) - E(X)^2) + o(1) \right]$$

$$= \frac{1}{t^{-0}} \left[(E(X^2) - E(X)^2) + o(1) \right]$$

$$= \frac{1}{t^{-0}} \left[(E(X^2) - E(X)^2) + o(1) \right]$$

donc φ_X est dérivable en 0 et $\varphi_X'(0) = \frac{V(X)}{2}$.

(c) i) Soit $u \leq 0$. On applique la formule de Taylor-Lagrange avec reste intégral à la fonction exp entre 0 et u:

$$\exp(u) = \frac{\exp^{(0)}(0)}{0!} + \frac{\exp^{(1)}(0)}{1!}u + \frac{\exp^{(2)}(0)}{2!}u^2 + \int_0^u \frac{(t-u)^2}{2!}\exp^{(3)}(t) dt,$$

donc

$$e^{u} - 1 - u - \frac{u^{2}}{2} = -\int_{u}^{0} \frac{(t-u)^{2}}{2!} e^{t} dt \le 0,$$

ainsi

$$\forall u \le 0, \quad e^u \le 1 + u + \frac{u^2}{2}.$$

ii) Supposons que X ne prend que les valeurs négatives ou nulles, donc, pour tout $k \in [1, t]$, on a $x_k \le 0$. En utilisant l'inégalité de la question précédente, on a

$$\forall t \ge 0, \ M_X(t) = \sum_{k=1}^r p_k e^{tx_k}$$

$$\le \sum_{k=1}^r p_k \left(1 + (x_k t)^2 + \frac{1}{2} (x_k t)^2 \right) \quad \text{car } x_k t \le 0 \text{ et } p_k \ge 0$$

$$= \sum_{k=1}^r p_k + t \sum_{k=1}^r p_k x_k + \frac{t^2}{2} \sum_{k=1}^r p_k x_k^2$$

$$= 1 + tE(X) + \frac{t^2}{2} E(X^2),$$

donc, par croissance de la fonction ln, on a

$$\forall t > 0, \quad \ln(M_X(t)) \le \ln(1 + tE(X) + \frac{t^2}{2}E(X^2)),$$

or $^5 \forall \theta \geq 0$, $\ln(1+\theta) \leq \theta$, alors

$$\forall t > 0, \quad \ln(M_X(t)) \le tE(X) + \frac{t^2}{2}E(X^2),$$

^{5.} Considérons la fonction $f: \theta \mapsto \ln(1+\theta) - \theta$. Cette fonction est dérivable sur \mathbb{R}_+ et $\forall \theta \in \mathbb{R}_+, f'(\theta) = -\frac{\theta}{1+\theta} \leq 0$, donc f est décroissante sur \mathbb{R}_+ . Par suite $\forall \theta \in \mathbb{R}_+, f(\theta) \leq f(0)$, d'où $\forall \theta \geq 0$, $\ln(1+\theta) \leq \theta$.

par suite

$$\forall t > 0, \ \varphi_X(t) = \frac{1}{t} \ln(M_X(t)) \le E(X) + \frac{t}{2} E(X^2).$$

On voit que l'inégalité demandée est encore vraie pour t=0.

- (d) Quitte à réindexer la famille $(x_k)_{1 \le k \le r}$, on peut supposer que $x_1 < x_2 < \cdots < x_r$.
 - i) Supposons par l'absurde que la famille (f_1, \ldots, f_r) est liée, il existe donc $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ non tous nuls tels que

$$\alpha_1 f_1 + \dots + \alpha_r f_r = 0. \tag{1}$$

Posons $k_0 = \min\{k \in [1, r] : \alpha_k \neq 0\}$ de tel sorte que $\alpha_1 = \cdots = \alpha_{k_0 - 1} = 0$ et $\alpha_{k_0} \neq 0$. Donc la relation (1) devient $\alpha_{k_0} f_{k_0} + \cdots + \alpha_r f_r = 0$, c.à.d.

$$\forall t \in \mathbb{R}, \ \alpha_{k_0} e^{x_{k_0}t} + \dots + \alpha_r e^{x_rt} = 0,$$

d'où

$$\forall t \in \mathbb{R}, \ \alpha_{k_0} = -\sum_{k=k_0+1}^r \alpha_k e^{(x_k - x_{k_0})t},$$

donc, par passage à la limite dans cette égalité lorsque t tend vers $-\infty$, on obtient $\alpha_{k_0} = 0$, ce qui est contredit la définition de k_0 . Ainsi la famille (f_1, \ldots, f_r) est libre.

ii) Posons $E = X(\Omega) \cup Y(\Omega)$. On a⁶

$$\varphi_{X} = \varphi_{Y} \iff \forall t \in \mathbb{R}^{*}, \ \varphi_{X}(t) = \varphi_{Y}(t)$$

$$\iff \forall t \in \mathbb{R}^{*}, \ \frac{1}{t} \ln(M_{X}(t)) = \frac{1}{t} \ln(M_{Y}(t))$$

$$\iff \forall t \in \mathbb{R}, \ \ln(M_{X}(t)) = \ln(M_{Y}(t))$$

$$\iff \forall t \in \mathbb{R}, \ M_{X}(t) = M_{Y}(t)$$

$$\iff \forall t \in \mathbb{R}, \ \sum_{x \in X(\Omega)} P(X = x) e^{tx} = \sum_{x \in Y(\Omega)} P(Y = x) e^{tx}$$

$$\iff \forall t \in \mathbb{R}, \ \sum_{x \in E} P(X = x) e^{tx} = \sum_{x \in E} P(Y = x) e^{tx}$$

$$\iff \forall t \in \mathbb{R}, \ \sum_{x \in E} (P(X = x) - P(Y = x)) e^{tx} = 0$$

$$\iff \sum_{x \in E} (P(X = x) - P(Y = x)) f_{x} = 0 \quad \text{avec } f_{x}(t) = e^{tx}$$

$$\iff \forall x \in E, \ P(X = x) - P(Y = x) \quad \text{car la famille } (f_{x})_{x \in E} \text{ est libre d'après } \mathbf{I.3.d.ii}$$

$$\iff \forall x \in E, \ P(X = x) = P(Y = x)$$

$$\iff X \text{ et } Y \text{ ont même loi}$$

(e) Supposons que X et Y sont des variables aléatoires finies indépendantes. Donc, pour tout $t \in \mathbb{R}$, les variables aléatoires e^{tX} et e^{tY} sont indépendantes, dès lors

$$\forall t \in \mathbb{R}, M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX} e^{tY}) = E(e^{tX})E(e^{tY}) = M_X(t)M_Y(t),$$

Rappel : Si $x \notin X(\Omega)$, alors P(X = x) = 0.

^{6.} Rappel : Soient X et Y deux v.a. finies définies sur un espace probabilisé (Ω, \mathcal{A}, P) et E un ensemble fini contenant $X(\Omega)$ et $Y(\Omega)$. Alors : X et Y ont même loi ssi : $\forall x \in E, \ P(X = x) = P(Y = x)$.

par suite

$$\forall t \in \mathbb{R}^*, \ \varphi_{X+Y}(t) = \frac{1}{t} \ln(M_{X+Y}(t)) = \frac{1}{t} \ln(M_X(t)M_Y(t)) \\ = \frac{1}{t} \ln(M_X(t)) + \frac{1}{t} \ln(M_Y(t)) = \varphi_X(t) + \varphi_Y(t),$$

finalement $\varphi_{X+Y} = \varphi_X + \varphi_Y$.

(f) Supposons que la variable aléatoire X suit une loi binomiale de paramètres s et p. Considérons s variables aléatoires Z_1, \ldots, Z_s indépendantes et suivant toutes une loi de Bernoulli de paramètre p, donc ⁷ la variable aléatoire $Z = Z_1 + \cdots + Z_s$ suit une loi binomiale de paramètres s et p et par suite les v.a. X et Z ont la même loi, du coup, pour tout $t \in \mathbb{R}$, e^{tX} et e^{tZ} ont aussi la même loi, dès lors ⁸

$$\forall t \in \mathbb{R}, M_X(t) = E(e^{tX}) = E(e^{tZ})$$

$$= E(e^{t(Z_1 + \dots + Z_s)})$$

$$= E(e^{tZ_1} \times \dots \times e^{tZ_s})$$

$$= E(e^{tZ_1}) \times \dots \times E(e^{tZ_s}) \quad \text{car les v.a. } Z_1, \dots, Z_s \text{ sont indépendantes}$$

$$= (E(e^{tZ_1}))^s \quad \text{car les v.a. } Z_1, \dots, Z_s \text{ suivent la même loi}$$

$$= (1 - p + p e^t)^s \quad \text{car } Z_1 \text{ suit une loi de Bernoulli de paramètre p et d'après la question } \mathbf{I.1}$$

(g) On a

$$\forall t \in \mathbb{R}, \ M_{-X}(t) = E(e^{t(-X)}) = E(e^{(-t)X}) = M_X(-t),$$

donc

$$\forall t \in \mathbb{R}^*, \ \varphi_{-X}(t) = \frac{1}{t} \ln(M_{-X}(t)) = \frac{1}{t} \ln(M_X(-t)) = -\frac{1}{-t} \ln(M_X(-t)) = -\varphi_X(-t),$$

ainsi

$$X$$
 est symétrique \iff X et $-X$ ont la même loi
$$\iff \varphi_X = \varphi_{-X} \qquad \text{d'après la question I.3.d.ii}$$

$$\iff \forall t \in \mathbb{R}^*, \ \varphi_X(t) = \varphi_{-X}(t)$$

$$\iff \forall t \in \mathbb{R}^*, \ \varphi_X(t) = -\varphi_X(-t)$$

$$\iff \forall t \in \mathbb{R}^*, \ \varphi_X(-t) = -\varphi_X(t)$$

$$\iff \varphi_X \text{ est impaire.}$$

4. (a) On a 9 $E(S_n) = E(X_1) + \cdots + E(X_n) = nm$ et, comme les v.a. X_1, \dots, X_n sont mutuellement indépendantes, alors $V(S_n) = V(X_1) + \cdots + V(X_n) = n\sigma^2$.

Pour tout $t \in \mathbb{R}$, on a

$$M_{S_n^*}(t) = E\left(e^{tS_n^*}\right) = E\left(e^{t\frac{S_n-nm}{\sqrt{n}\sigma}}\right)$$

$$= E\left(e^{-t\frac{m\sqrt{n}}{\sigma}}e^{t\frac{S_n}{\sqrt{n}\sigma}}\right) = e^{-t\frac{m\sqrt{n}}{\sigma}}E\left(e^{t\frac{S_n}{\sqrt{n}\sigma}}\right)$$

$$= e^{-t\frac{m\sqrt{n}}{\sigma}}E\left(e^{t\frac{t}{\sqrt{n}\sigma}X_1} \times \cdots \times e^{t\frac{t}{\sqrt{n}\sigma}X_n}\right)$$

$$= e^{-t\frac{m\sqrt{n}}{\sigma}}E\left(e^{t\frac{t}{\sqrt{n}\sigma}X_1}\right) \times \cdots \times E\left(e^{t\frac{t}{\sqrt{n}\sigma}X_n}\right) \quad \text{car } X_1, \dots, X_n \text{ sont indépendantes}$$

$$= e^{-t\frac{m\sqrt{n}}{\sigma}}E\left(e^{t\frac{t}{\sqrt{n}\sigma}X_1}\right) \times \cdots \times E\left(e^{t\frac{t}{\sqrt{n}\sigma}X_n}\right) \quad \text{car } X_1, \dots, X_n \text{ ont la même loi que } X$$

$$= e^{-t\frac{m\sqrt{n}}{\sigma}}\left(M_X(\frac{t}{\sqrt{n}\sigma})\right)^n,$$

^{7.} Rappel : Si X_1, \ldots, X_n sont des v.a. indépendantes et suivant une même loi de Bernoulli de paramètre p, alors la v.a. $X_1 + \cdots + X_n$ suit une loi binomiale de paramètres n et p.

^{8.} Rappel: Si X et Y sont deux v.a ayant la même loi, alors, sous réserve d'existence, on a E(X) = E(Y).

^{9.} Les v.a. X_1, \ldots, X_n ont la même loi que X, donc $E(X_1) = \cdots = E(X_n) = E(X) = m$ et $V(X_1) = \cdots = V(X_n) = V(X) = \sigma^2$

donc, pour tout t non nul,

$$\varphi_{S_n^*}(t) = \frac{1}{t} \ln(M_{S_n^*}(t)) = \frac{1}{t} \ln\left(e^{-t\frac{m\sqrt{n}}{\sigma}} \left(M_X(\frac{t}{\sqrt{n}\sigma})\right)^n\right)$$

$$= -\frac{m\sqrt{n}}{\sigma} + \frac{n}{t} \ln\left(M_X(\frac{t}{\sqrt{n}\sigma})\right)$$

$$= -\frac{m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma} \frac{1}{\frac{t}{\sqrt{n}\sigma}} \ln\left(M_X(\frac{t}{\sqrt{n}\sigma})\right)$$

$$= -\frac{m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma} \varphi_X\left(\frac{t}{\sqrt{n}\sigma}\right).$$

5. D'après la question I.3.b, la fonction φ_X est dérivable en 0, donc elle admet un développement limité à d'ordre 1 en 0 et

$$\varphi_X(u) \underset{u \to 0}{=} \varphi_X(0) + \varphi_X'(0)u + o(u) \underset{u \to 0}{=} E(X) + \frac{V(X)}{2}u + o(u) \underset{u \to 0}{=} m + \frac{\sigma^2}{2}u + o(u).$$

Comme $\frac{t}{\sigma\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 0$, alors $\varphi_X\left(\frac{t}{\sigma\sqrt{n}}\right) \underset{n \to +\infty}{=} m + \frac{t\sigma}{2\sqrt{n}} + o\left(\frac{t}{\sigma\sqrt{n}}\right)$, donc, en vertu de la question **I.4.a**,

$$\varphi_{S_n^*}(t) = -\frac{m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma}\varphi_X\left(\frac{t}{\sqrt{n}\sigma}\right)$$

$$\stackrel{=}{\underset{n\to+\infty}{=}} -\frac{m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma}\left(m + \frac{t\sigma}{2\sqrt{n}} + o\left(\frac{t}{\sigma\sqrt{n}}\right)\right)$$

$$\stackrel{=}{\underset{n\to+\infty}{=}} \frac{t}{2} + o\left(\frac{t}{2}\right)$$

Partie II

Cas des variables aléatoires discrètes réelles infinies

Notons $(x_n)_{n\in\mathbb{N}}$ une énumération des valeurs de X.

- 1. (a) Soient $a, b, c \in \mathbb{R}$ tels que a < b < c et $x \in \mathbb{R}$. Si $x \ge 0$, alors $bx \le cx$ et, comme exp est croissante, alors $e^{bx} \le e^{cx}$, par suite $e^{bx} \le e^{cx} + e^{ax}$. Sinon, on a $bx \le ax$ et, comme exp est croissante, alors $e^{bx} \le e^{ax}$, par suite $e^{bx} < e^{ax} + e^{cx}$. Donc dans les deux cas $e^{bx} < e^{ax} + e^{cx}$.
 - (b) On a $e^{0.X} = 1$ est une variable aléatoire constante, donc elle admet une espérance, dès lors la fonction $M_X : t \longmapsto E(e^{tX})$ est définie en 0 et par suite $0 \in I_X$.
 - Montons que I_X est un intervalle ¹⁰ de ℝ.
 Soient a, c ∈ I_X tels que a < c. Montrons que [a, c] ⊂ I_X. Puisque a, c ∈ I_X, il suffit de montrer que [a, c] ⊂ I_X. Soit donc b ∈ [a, c]. Puisque a, c ∈ I_X, alors M_X(a) et M_X(b) existent, ce qui signifie que les v.a. e^{aX} et e^{cX} admettent des espérances, du coup la v.a. e^{aX} + e^{cX} admet aussi une espérance et, comme d'après la question II.A.a, e^{bX} ≤ e^{aX} + e^{cX}, alors ¹¹ la v.a. e^{bX} admet une espérance et M_X(b) existe, dès lors b ∈ I_X. Ainsi [a, c] ⊂ I_X et I_X est un intervalle de ℝ.
- **2.** Soit $t \in \mathbb{R}$. On a ¹²

$$\forall n \in \mathbb{N}, \quad P(Y=n) e^{tn} = e^{-\lambda} \frac{\lambda^n}{n!} e^{tn} = e^{-\lambda} \frac{(\lambda e^t)^n}{n!}$$

- 10. Rappel : Une partie I de $\mathbb R$ est dite intervalle si : $\forall a,c \in I,\ a < c \Longrightarrow [a,c] \subset I.$
- 11. Soient X et Y deux v.a. réelles telles que $|X| \leq Y$. Si Y admet Une espérance, alors X admet aussi une espérance.
- 12. Y est une v.a. qui suit une loi de Poisson de paramètre $\lambda > 0$, donc $Y(\Omega) = \mathbb{N}$ et $\forall n \in \mathbb{N}, P(Y = n) = e^{-\lambda} \frac{\lambda^n}{n!}$.

et

$$\forall n \in \mathbb{N}, \quad \frac{P(Y=n+1)e^{t(n+1)}}{P(Y=n)e^{tn}} = \frac{\lambda e^{2t}}{n+1} \xrightarrow[n \to +\infty]{} 0 < 1,$$

donc, d'après la règle de D'Alembert, la série $\sum_{n\geq 0} P(Y=n) e^{tn}$ est absolument et par suite, d'après le théorème de transfert des v.a. réelles discrètes infinies ¹³, la v.a. e^{tY} admet une espérance et

$$E(e^{tY}) = \sum_{n=0}^{+\infty} P(Y=n) e^{tn} = \sum_{n=0}^{+\infty} e^{-\lambda} \frac{(\lambda e^t)^n}{n!} = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{(\lambda e^t)^n}{n!}$$
$$= e^{-\lambda} \exp(\lambda e^t) = \exp(-\lambda + \lambda e^t).$$

Il en résulte que M_Y est définie sur $\mathbb R$ et que : $\forall t \in \mathbb R, \ M_Y(t) = \exp\left(-\lambda + \lambda \operatorname{e}^t\right)$.

3. (a) Soient $k, n \in \mathbb{N}$ et $t \in]-\alpha, \alpha[$. On a $tx_n \leq |tx_n| \leq \alpha |x_n|$ et, comme la fonction exp est croissante, alors $e^{tx_n} \leq e^{\alpha |x_n|}$, ainsi

$$\left| u_n^{(k)}(t) \right| = \left| P(X = x_n) x_n^k e^{tx_n} \right| = P(X = x_n) \left| x_n \right|^k e^{tx_n} \le P(X = x_n) \left| x_n \right|^k e^{\alpha |x_n|}.$$

(b) Soit $k \in \mathbb{N}$ et considérons la fonction $f: x \longmapsto x^k e^{(\alpha-\rho)x}$. On a $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^k e^{(\alpha-\rho)x} = 0$ (car $\alpha - \rho < 0$), donc f admet une limite finie en $+\infty$, par suite elle est bornée au voisinage de $+\infty$, c.à.d. il existe a > 0 tel que f soit bornée sur a > 0 tel que f soit bornée sur a > 0 tel que f soit bornée sur a > 0 tel que f soit bornée sur a > 0 tel que f soit bornée sur a > 0 tel que

$$\forall x \in \mathbb{R}_+, \quad f(x) = x^k e^{(\alpha - \rho)x} \le M_k,$$

d'où

$$\forall x \in \mathbb{R}_+, \quad x^k e^{\alpha x} \le M_k e^{\rho x},$$

ainsi

$$\forall n \in \mathbb{N}, \quad \left| u_n^{(k)}(t) \right| \le P(X = x_n) \left| x_n \right|^k e^{\alpha |x_n|} \le P(X = x_n) M_k e^{\rho |x_n|}.$$

(c) Pour tout $n \in \mathbb{N}$, on a $e^{\rho|x_n|} \le e^{\rho x_n} + e^{-\rho x_n}$, donc, en vertu de la question précédente,

$$\forall k \in \mathbb{N}, \forall t \in]-\alpha, \alpha[, \left|u_n^{(k)}(t)\right| \le P(X=x_n)M_k e^{\rho|x_n|} \le M_k P(X=x_n) e^{\rho x_n} + M_k P(X=x_n) e^{-\rho x_n} \quad (\star).$$

Puisque $-\rho, \rho \in]-a, a[\subset I_X, \text{ alors } M_X(-\rho) \text{ et } M_X(\rho) \text{ existent, ce qui signifie que les v.a. } e^{-\rho X} \text{ et } e^{\rho X}$ admettent des espérances, donc, d'après le théorème de transfert pour les v.a. discrètes infinies, les séries numériques $\sum_{n\geq 0} P(X=x_n) e^{\rho x_n}$ et $\sum_{n\geq 0} P(X=x_n) e^{-\rho x_n}$ sont aussi convergentes, du coup la série numérique $\sum_{n\geq 0} M_x P(X_{n-n}) e^{\rho x_n} + M_x P(X_{n-n}) e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte dans au verte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte de (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$ sort appropriéte (+) le série $\sum_{n\geq 0} P(X_n) e^{-\rho x_n} e^{-\rho x_n}$

 $\sum_{n\geq 0} M_k P(X=x_n) e^{\rho x_n} + M_k P(X=x_n) e^{-\rho x_n} \text{ est convergente, donc, en vertu de } (\star), \text{ la série } \sum_{n\geq 0} u_n^{(k)} \text{ convergence parameters of a pour tout } k \in \mathbb{N}, \text{ du coup}$

normalement sur] $-\alpha, \alpha$ [pour tout $k \in \mathbb{N}$, du coup

►
$$\sum_{n\geq 0} u_n$$
 converge simplement sur $]-\alpha,\alpha[$,

absolument convergente. Dans ce cas, on a $E(f(X)) = \sum_{n=0}^{+\infty} P(X = x_n) f(x_n)$

^{13.} Théorème de transfert pour les v.a. réelles discrètes infinies : Soient X une v.a. réelle discrète infinies et $(x_n)_{n\in\mathbb{N}}$ est une énumération de ses valeurs. Soit en outre $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction. Alors, la v.a. f(X) admet une espérance ssi la série $\sum_{n\geq 0}P(X=x_n)f(x_n)$ est

 $\blacktriangleright \sum_{n>0} u_n^{(k)}$ converge uniformément sur $]-\alpha,\alpha[$ pour tout $k\in\mathbb{N}^*.$

Or u_n est de classe \mathcal{C}^{∞} sur $]-\alpha,\alpha[$ pour tout $n\in\mathbb{N},$ alors la fonction $M_X=\sum_{n=0}^{+\infty}u_n$ est de classe \mathcal{C}^{∞} sur

 $]-\alpha,\alpha[$ et $M_X^{(k)}=\sum_{n=0}^{+\infty}u_n^{(k)}$ pour tout $k\in\mathbb{N}.$ En particulier, on a

$$M_X^{(k)}(0) = \sum_{n=0}^{+\infty} u_n^{(k)}(0) = \sum_{n=0}^{+\infty} P(X = x_n) x_n^k = E(X^k).$$

Comme M_X de classe \mathcal{C}^{∞} sur $]-\alpha,\alpha[$ pour tout $\alpha\in]0,a[$, alors elle de classe \mathcal{C}^{∞} sur]-a,a[.

4. D'après la question II.2 la fonction M_Y est définie sur $\mathbb R$ par

$$\forall t \in \mathbb{R}, \ M_Y(t) = \exp\left(-\lambda + \lambda e^t\right),$$

donc, en vertu de la question précédente $E(Y)=M_Y'(0)=\lambda$ et $E(Y^2)=M_Y''(0)=\lambda+\lambda^2$, il s'ensuit que $V(X)=E(X^2)-E(X)^2=\lambda^2$.

Partie III

Cas des variables aléatoires à densité

Il est facile de montrer que, pour tout t non nul, la v.a. e^{tX} est à densité.

1. Soit $t \in I_X \cap I_Y$. Les v.a. X et Y sont indépendantes, donc les v.a. e^{tX} et e^{tY} sont aussi indépendantes et de plus elles admettent des espérances puisque $t \in I_X \cap I_Y$, ainsi $e^{tX} \times e^{tY} = e^{t(X+Y)}$ admet une espérance et

$$M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX} e^{tY}) = E(e^{tX})E(e^{tY}) = M_X(t)M_Y(t).$$

2. (a) On a

$$\forall k \in \mathbb{N}, \quad \forall x \in \mathbb{R}_+, \ \mathbf{e}^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = \frac{x^k}{k!} + \sum_{\substack{n=0\\n \neq k}}^{+\infty} \frac{x^n}{n!} \ge \frac{x^k}{k!},$$

donc

$$\forall k \in \mathbb{N}, \, \forall x \in \mathbb{R}_+, \quad x^k \le k! \, e^x.$$

En particulier, on a

$$\forall k \in \mathbb{N}, \ \forall t \in \mathbb{R}, \quad |ts|^k \le k! \, e^{|ts|},$$

finalement

$$\forall k \in \mathbb{N}, \ \forall t \in \mathbb{R}, \quad |t|^k \le \frac{k!}{s^k} e^{|ts|}.$$

(b) Soit $k \in \mathbb{N}$. Montrons que $E(|X|^k)$ est finie, ce qui revient à montrer que la v.a. $|X|^k$ admet des espérances. En vertu de la question précédente, on a

$$|X|^k \le \frac{k!}{s^k} e^{|sX|} \le \frac{k!}{s^k} (e^{sX} + e^{-sX}).$$

Comme $-s, s \in I_X$, alors les v.a. e^{-sX} et e^{sX} admettent des espérances et par suite les v.a. $e^{sX} + e^{-sX}$ et $\frac{k!}{s^k} \left(e^{sX} + e^{-sX} \right)$ admettent aussi une espérance , dès lors, en vertu de \bigstar , la v.a. $|X|^k$ admet une espérance.

(c) Soit $t \in]-s,s[$. D'après le théorème de transfert pour les v.a à densité, on a

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{+\infty} e^{tx} f(x) dx = \int_{-\infty}^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{(tx)^k}{n!} f(x) \right) dx = \int_{-\infty}^{+\infty} \left(\sum_{n=0}^{+\infty} f_n(x) \right) dx,$$

avec $f_n(x) = \frac{(tx)^k}{n!} f(x)$.

On a:

▶ La série de fonction $\sum f_n$ converge simplement sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad \sum_{n=0}^{+\infty} f_n(x) = e^{tx} f(x).$$

▶ on a

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \left| \sum_{k=0}^{n} f_k(x) \right| \le \sum_{k=0}^{n} |f_k(x)| = \sum_{k=0}^{n} |f_k(x)| = \sum_{k=0}^{n} f(x) \frac{|tx|^k}{k!}$$

$$\le \sum_{k=0}^{+\infty} f(x) \frac{|tx|^k}{k!} = f(x) e^{|tx|} \le f(x) e^{tx} + f(x) e^{-tx} = \varphi(x).$$

Puisque $-t, t \in]-s, s[\subset I_X,$ donc les v.a. e^{-tX} et e^{tX} admettent des espérances, alors, d'après le théorème de transfert pour les v.a à densité, les intégrales $\int_{-\infty}^{+\infty} e^{-tx} f(x) dx$ et $\int_{-\infty}^{+\infty} e^{tx} f(x) dx$ sont absolument convergentes et par suite l'intégrale $\int_{-\infty}^{+\infty} \left(e^{-tx} f(x) + e^{tx} f(x) \right) dx$ est aussi convergente et la fonction φ est intégrable sur \mathbb{R} .

Donc, d'après le théorème convergence dominée pour les séries ¹⁴, on a

$$M_X(t) = \int_{-\infty}^{+\infty} \left(\sum_{n=0}^{+\infty} f_n(x)\right) dx = \sum_{n=0}^{+\infty} \left(\int_{-\infty}^{+\infty} f_n(x) dx\right)$$

$$= \sum_{n=0}^{+\infty} \left(\int_{-\infty}^{+\infty} \frac{(tx)^k}{n!} f(x) dx\right) = \sum_{n=0}^{+\infty} \frac{t^k}{n!} \left(\int_{-\infty}^{+\infty} x^n f(x) dx\right)$$

$$= \sum_{n=0}^{+\infty} \frac{t^k}{n!} E(X^n) \quad \text{d'après le théorème de transfert}$$

(d) D'après la question précédente, on a

$$\forall t \in]-s, s[, \quad M_X(t) = \sum_{n=0}^{+\infty} \frac{t^n}{n!} E(X^k),$$

donc

$$\forall n \in \mathbb{N}, \quad \frac{M_X^{(n)}(0)}{n!} = \frac{E(X^n)}{n!} \text{ et } M_X^{(n)}(0) = E(X^n).$$

- 14. Théorème convergence dominée pour les séries : Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues par morceaux de I dans \mathbb{K} telle que :
 - $\blacktriangleright \sum f_n$ converge simplement sur I vers une fonction continue par morceaux.
 - ▶ Il existe une fonction $\varphi: I \longrightarrow \mathbb{R}_+$ intégrable telle que : $\forall n \in \mathbb{N}, \forall t \in I, \left| \sum_{k=0}^{n} f_k(t) \right| \leq \varphi(t)$

Alors les f_n et $\sum_{n=0}^{+\infty} f_n$ sont intégrables sur I et : $\int_I \left(\sum_{n=0}^{+\infty} f_n(t) \right) dt = \sum_{n=0}^{+\infty} \left(\int_I f_n(t) dt \right)$