2012 Mathématiques 4h PC

Préliminaire

Pour une matrice $A \in \mathcal{M}_n(\mathbb{R})$, on note

$$|||A||| = \sup_{x \in \mathbb{R}^n, ||x|| \le 1} ||Ax||.$$

- **1.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. L'application $x \mapsto Ax$ est un endomorphisme de \mathbb{R}^n , espace de dimension finie. Elle est donc continue. Elle est donc bornée sur la boule unité et $\sup_{x \in \mathbb{R}^n, ||x|| \le 1} ||Ax||$ existe et est un élément de \mathbb{R}^+ .
 - Notons $(e_1, ..., e_n)$ les vecteurs de la base canonique de \mathbb{R}^n . Il sont tous de norme 1, éléments de la boule unité.

$$||A|| = 0 \Rightarrow \forall i \in \{1, ..., n\}, ||Ae_i|| = 0 \Rightarrow \forall i, Ae_1 = 0$$

 $||A|| = 0 \Rightarrow$ chaque colonne de A est nulle $\Rightarrow A = 0$.

Réciproque immédiate.

• $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \forall x \in \mathbb{R}^n \text{ avec } ||x|| \leq 1$:

$$||(A+B)x|| = ||Ax+Bx|| \le ||Ax|| + ||Bx|| \le |||A|||| + |||B|||$$

et donc $\sup_{x \in \mathbb{R}^n, ||x|| \le 1} ||(A+B)x|| \le |||A||| + |||B|||.$

c.a.d. $|||A + B||| \le |||A||| + |||B|||$.

• $\forall A \in \mathcal{M}_n(\mathbb{R}), \ \forall \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}^n \ \text{avec} \ ||x|| \le 1$:

$$||(\lambda A)x|| = |\lambda| \times ||Ax|| \leq |\lambda| \times |||A||| \quad \text{et donc } |||\lambda A||| \leq |\lambda| \times |||A|||$$

De la même manière, si $\lambda \neq 0$, on obtient avec $A' = \lambda A$ et $\lambda' = 1/\lambda$

$$|||A||| = |||(1/\lambda)\lambda A||| \le (1/|\lambda|) \times |||\lambda A|||$$

Finalement $|||\lambda A||| = |\lambda| \times |||A|||$ (évident si $\lambda = 0$)

||| ||| définit bien une norme de $\mathcal{M}_n(\mathbb{R})$. On remarque que ||| I_n ||| = 1.

2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $y \in \mathbb{R}^n$, $y \neq 0$. Notons $z = \frac{1}{||y||}y$. Ce vecteur est de norme 1 et donc

$$||Az|| = \frac{1}{||y||} ||Ay|| \le |||A|||$$
 et $||Ay|| \le |||A||| \times ||y||$

(résultat encore vrai si y = 0.

Soit alors $B \in \mathcal{M}_n(\mathbb{R})$ et $x \in \mathbb{R}^n$ avec $||x|| \le 1$.

$$||(AB)x|| = ||A(Bx)|| \le |||A||| \times ||Bx|| \le |||A||| \times |||B|||$$

X-ENS-ESPCI Maths 12 - Corrigé proposé pour UPS par H.Demongeot - 1 sur 12

D'où
$$|||AB||| = \sup_{x \in \mathbb{R}^n, ||x|| \le 1} ||ABx|| \le |||A||| \times |||B|||.$$

Première partie : un exemple en dimension 1

$$(P) \quad \left\{ \begin{array}{l} y' = ay \left(1 - \frac{y}{b}\right) \\ y(0) = y_0 \end{array} \right.$$

où a > 0, b > 0 et $y_0 \in \mathbb{R}$.

- **3.** La fonction $f: y \mapsto ay\left(1 \frac{y}{b}\right)$ est une fonction polynôme de classe \mathcal{C}^1 sur \mathbb{R} . D'après le théorème 1, le problème (P) admet une unique solution maximale.
- **4.** Soit $y_0 \in]0, b[$.
 - (a) Remarquons que les fonction constantes $y:t\mapsto 0$ et $y:t\mapsto b$ sont solutions de l'équation différentielle sur \mathbb{R} . Si la solution y s'annulait en un point t de I ce serait d'après le théorème 1 la fonction nulle et on aurait y(0)=0 ce qui n'est pas.

Pour la même raison la fonction y ne peut pas prendre la valeur b sur I. Mais les fonctions y et y-b sont continues sur I et ne s'annulent pas. Elles restent de signe constant donné par la valeur en 0, y_0 .

Par suite, pour tout $t \in I$, $y(t) \in]0, b[$.

(b) Notons F la fonction définie sur I par :

$$\forall t \in I, F(t) = \int_{y_0}^{y(t)} \frac{du}{u\left(1 - \frac{u}{b}\right)} - at.$$

Cette fonction est bien définie car pour tout $t \in I$, le segment d'extrémité $y_0, y(t)$ est inclus dans]0, b[. Elle est dérivable et, par dérivation de fonctions composées :

$$\forall t \in I, F'(t) = \frac{1}{y(t)\left(1 - \frac{y(t)}{b}\right)}y'(t) - a = 0$$

F est constante sur I, $0 \in I$ donc $\forall t \in I$, $F(t) = \int_{y_0}^{y_0} ()du - a \times 0 = 0$. F est nulle sur I ce qui correspond à l'égalité demandée.

(c)
$$\frac{1}{u(1-\frac{u}{b})} = \frac{\alpha}{u} + \frac{\beta}{1-\frac{u}{b}} = \frac{1}{u} + \frac{1/b}{1-\frac{u}{b}}$$

 $\forall t \in I, \left[\ln|u| - \ln\left|1 - \frac{u}{b}\right| \right]_{y_0}^{y(t)} = at$

Et pour tout $t \in I$, $y(t) \in]0, b[$ d'où :

$$\ln\left(\frac{y(t)}{1 - \frac{y(t)}{b}}\right) = \ln\left(\frac{y_0}{1 - \frac{y_0}{b}}\right) + at$$
$$\frac{by(t)}{b - y(t)} = \frac{by_0}{b - y_0}e^{at}$$

Un calcul simple donne, pour tout t de I:

$$y(t) = \frac{Ke^{at}b}{b + Ke^{at}} \quad \text{avec } K = \frac{by_0}{b - y_0} > 0$$

Ceci définit une fonction sur \mathbb{R} qui vérifie le problème (P) et qui est solution sur \mathbb{R} de l'équation différentielle. L'intervalle I est donc \mathbb{R} .

(d) $\lim_{t\to +\infty} y(t) = b$ et $\lim_{t\to -\infty} y(t) = 0$. Comme y'>0 sur \mathbb{R} , y est strictement croissante sur \mathbb{R} .

Deuxième partie : le cas linéaire

$$(L) \quad \left\{ \begin{array}{l} Y' = AY \\ Y(0) = Y_0 \end{array} \right.$$

où $A \in \mathcal{M}_n(\mathbb{R})$ et $Y_0 \in \mathbb{R}^n$.

On définit $\varphi_A : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ par $\varphi_A(t; Y_0) = Y(t)$ où Y est la solution maximale du problème (L).

5. Soit Y_0 , Y_1 deux vecteurs quelconques de \mathbb{R}^n . Notons Y et Z les solutions de (L) telle que $Y(0) = Y_0$ et $Z(0) = Y_1$. Pour tout réel α , la fonction $Y + \alpha Z$ vérifie :

$$(Y+\alpha Z)'=Y'+\alpha Z'=AY+\alpha AZ=A(Y+\alpha Z)\quad \text{avec } (Y+\alpha Z)(0)=Y_0+\alpha Y_1.$$

 $Y + \alpha Z$ est l'unique solution de (L) qui prend la valeur $Y_0 + \alpha Y_1$ pour t = 0. C'est donc la fonction $t \mapsto \varphi_A(t; Y_0 + \alpha Y_1)$. On a donc :

$$\forall t \in \mathbb{R}, (Y + \alpha Z)(t) = Y(t) + \alpha Z(t) = \varphi_A(t; Y_0) + \alpha \varphi_A(t; Y_1) = \varphi_A(t; Y_0 + \alpha Y_1)$$

On vient donc de montrer que, pour tout $t \in \mathbb{R}$, $Y_0 \mapsto \varphi_A(t; Y_0)$ est linéaire.

Étudions le noyau de chacune de ces applications linéaires. Soit t_1 un réel fixé. $\varphi(t_1; Y_0) = 0 \Rightarrow Y(t_1) = 0$ où Y est la solution de (L) qui prend la valeur Y_0 en t = 0. Mais comme le système est linéaire, la solution nulle est l'unique solution qui s'annule en un point. Par suite pour tout t, $\varphi(t, Y_0) = 0$ et en particulier $\varphi_A(0, Y_0) = Y(0) = Y_0 = 0$.

L'application $Y_0 \mapsto \varphi_A(t_1, Y_0)$ est injective. Comme c'est un endomorphisme de \mathbb{R}^n elle est bijective. Sa matrice dans la base canonique de \mathbb{R}^n est une matrice inversible, élément de $GL_n(\mathbb{R})$. Notons la $e_A(t_1)$. Elle vérifie :

$$\forall Y_0 \in \mathbb{R}^n, \, \varphi_A(t_1; Y_0) = e_A(t_1)Y_0$$

On a donc défini une application $e_A : \mathbb{R} \to GL_n(\mathbb{R})$ telle que

$$\forall t \in \mathbb{R}, \forall Y_0 \in \mathbb{R}^n, \, \varphi_A(t; Y_0) = e_A(t)Y_0.$$

6. (a) Utilisons les vecteurs de la base canonique de \mathbb{R}^n . Pour tout $i, t \mapsto e_A(t)e_i$ est la solution de (L) qui prend la valeur e_i pour t=0. C'est donc une fonction de classe \mathcal{C}^1 . Ses fonctions coordonnées sont celles de la $i^{\text{ème}}$ colonne de la matrice $e_A(t)$. Toutes les fonctions coordonnées de e_A sont de classe \mathcal{C}^1 . La fonction est donc de classe \mathcal{C}^1 sur \mathbb{R} . Pour tout Y_0 de \mathbb{R}^n , tout t de \mathbb{R} :

$$Y'(t) = (\varphi_A(t; Y_0))' = (e_A(t)Y_0)' = e'_A(t)Y_0 = A(\varphi_A(t; Y_0)) = Ae_A(t)Y_0$$

Les deux applications linéaires $Y_0 \mapsto e'_A(t)Y_0$ et $Y_0 \mapsto Ae_A(t)Y_0$ sont égales et ont même matrice dans la base canonique de \mathbb{R}^n donc :

$$\forall t \in \mathbb{R}, e'_A(t) = Ae_A(t).$$

(b) Par définition, $\forall Y_0 \in \mathbb{R}^n$, $\varphi_A(0;Y_0) = Y_0 = e_A(0)Y_0$. D'où $e_A(0) = I_n$. Soit alors t_1 un réel fixé, $Y_0 \in \mathbb{R}^n$ et Y la solution de (L) telle que $Y(0) = Y_0$. Pour tout $t, Y(t) = e_A(t)Y_0$. En particulier $Y(t_1) = e_A(t_1)Y_0$. L'application $Z: s \mapsto Y(s+t_1)$ est solution sur \mathbb{R} de l'équation Z' = AZ car, pour tout $s, Z'(s) = Y'(s+t_1) = AY(s+t_1) = AZ(s)$. Comme $Z(0) = Y(t_1)$, cette solution est $s \mapsto \varphi_A(s; Y(t_1)) = e_A(s)Y(t_1)$. On obtient donc pour Y_0, s, t_1 quelconques:

$$Z(s) = Y(s + t_1) = e_A(s + t_1)Y_0 = e_A(s)Y_1(t) = e_A(s)e_A(t_1)Y_0$$

On a donc:

$$\forall (t,s) \in \mathbb{R}^2, \quad e_A(s+t) = e_A(t+s) = e_A(t)e_A(s) = e_A(s)e_A(t).$$

- (c) En particulier pour tout $t \in \mathbb{R}$: $e_A(t)e_A(-t) = e_A(t-t) = e_A(0) = I_n$ et $e_A(-t) = e_A(t)^{-1}$.
- 7. (a) Soit $P \in GL_n(\mathbb{R})$ et $Y_0 \in \mathbb{R}^n$. Soit Y la solution de (L) telle que $Y(0) = Y_0$. Par définition $\forall t, Y(t) = e_A(t)Y_0$. Notons $Z = P^{-1}Y$; on a $Z' = P^{-1}Y' = P^{-1}AY = P^{-1}APZ$. De plus $Z(0) = P^{-1}Y_0$. Z est solution du problème $(L'): Z' = P^{-1}APZ$ et $Z(0) = P^{-1}Y_0$. On a donc par définition:

$$\forall t \in \mathbb{R}, e_{P^1AP}(t)P^{-1}Y_0 = Z(t) = P^{-1}Y(t) = P^{-1}e_A(t)Y_0$$

Ceci est vrai pour tout Y_0 donc $e_{P^1AP}(t)P^{-1} = P^{-1}e_A(t)$. Donc pour tout réel $t: e_{P^{-1}AP}(t) = P^{-1}e_A(t)P$.

(b) Si A est une matrice diagonale $A=\begin{pmatrix}\lambda_1&(0)\\&\ddots\\&&\ddots\\(0)&&\lambda_n\end{pmatrix}$, la solution de (L) est Y de fonctions cordonnées $y_1,...,y_n$ avec : $y_1(t)=\alpha_1e^{t\lambda_1},...,y_n(t)=\alpha_ne^{t\lambda_n}.$

X-ENS-ESPCI Maths 12 - Corrigé proposé pour UPS par H.Demongeot - 4 sur 12

La condition $Y(0) = Y_0$ impose, $\forall i, \alpha_i = Y_{0,i}$. Donc pour tout réel t, $Y(t) = D(t)Y_0$ où D(t) est la matrice diagonale dont les coefficients sont $e^{t\lambda_1}, \dots, e^{t\lambda_n}$.

$$\forall t \in \mathbb{R}, e_A(t) = \begin{pmatrix} e^{t\lambda_1} & (0) \\ & \ddots & \\ & & \ddots \\ & & & \ddots \\ & & & e^{t\lambda_n} \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$
. $\chi_A(z) = z^2 - 5z + 6 = (z - 2)(z - 3)$; $A = PDP^{-1}$ avec $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ et $P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$.
$$e_{P^{-1}AP}(t) = e_D(t) = \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{3t} \end{pmatrix}$$
; $e_A(t) = Pe_D(t)P^{-1}A = \begin{pmatrix} -e^{2t} + 2e^{3t} & 2e^{2t} - 2e^{3t} \\ -e^{2t} + e^{3t} & 2e^{2t} - e^{3t} \end{pmatrix}$

8. (a) Soit $F(t) = \alpha + \beta \int_0^t \phi(s)ds e^{-\beta t}$. F est dérivable sur \mathbb{R} et, $\forall t \in \mathbb{R}$:

$$F'(t) = -\beta e^{-\beta t} (\alpha + \beta \int_0^t \phi(s) ds) + e^{-\beta t} \beta \phi(t) = \beta e^{-\beta t} \left(\phi(t) - \alpha - \beta \int_0^t \phi(s) ds \right)$$

Par hypothèse, pour tout $t, F'(t) \leq 0$. F est décroissante. Pour $t \geq 0$, $F(t) \leq F(0)$. Comme $e^{-\beta t} > 0$, $\alpha + \int_0^t \phi(s) ds \leq \alpha e^{\beta t}$.

L'inégalité donnée en hypothèse donne alors :

$$\forall t \in [0, +\infty[, \phi(t) \le \alpha + \beta \int_0^t \phi(s) ds \le \alpha e^{\beta t}$$

(b)
$$\forall t \in \mathbb{R}, e'_A(t) = Ae_A(t) \text{ et } \int_0^t e'_A(s)ds = e_A(t) - e_A(0) = \int_0^t Ae_A(s)ds.$$

 $e_A(t) = I_n + \int_0^t Ae_A(s)ds.$ Comme on a une norme on a:

$$\forall t \ge 0, |||e_A(t)||| \le |||I_n||| + ||| \int_0^t Ae_A(s)ds||| \le 1 + \int_0^t |||Ae_A(s)|||ds||$$

Avec les propriétés de la norme triple :

$$|||e_A(t)||| \le 1 + \int_0^t |||A||| \times |||e_A(s)|||ds|$$

Il ne reste plus qu'à appliquer le résultat de la question précédente avec $\alpha = 1, \ \beta = |||A|||$ et $\phi : t \mapsto |||e_A(t)|||$. On obtient directement :

$$\forall t \in \mathbb{R}^+, |||e_A(t)||| \le e^{|||A||| \times t}.$$

De même pour tout réel t positif :

$$|||e_A(-t)||| \le |||I_n||| + ||| \int_{-t}^0 Ae_A(s)ds||| \le 1 + \int_{-t}^0 |||Ae_A(s)|||ds||$$

$$|||e_A(-t)||| \le 1 + \int_0^t |||Ae_A(-s)|||ds \le 1 + \int_0^t |||A||| \times |||e_A(-s)|||ds$$

Le résultat précédent appliqué à $\phi: t \mapsto |||e_A(-t)|||$ donne :

$$\forall t \in \mathbb{R}^+, |||e_A(-t)||| < e^{|||A||| \times (-t)}.$$

En résumé : $\forall t \in \mathbb{R}, |||e_A(-t)||| \le e^{|||A||| \times |t|}$.

9.

$$(U) \left\{ \begin{array}{c} Z'(t) = AZ(t) + g(t) \\ Z(0) = Z_0 \end{array} \right.$$

(a) Soit la fonction Z définie sur \mathbb{R} par :

$$Z(t) = e_A(t) \left(Z_0 + \int_0^t e_A(-s)g(s)ds \right)$$

Z est définie et dérivable sur \mathbb{R} car $s \mapsto e_A(-s)g(s)$ est une application continue de \mathbb{R} dans \mathbb{R}^n ; son intégrale est à valeurs dans \mathbb{R}^n et le produit par $e_A(t)$ permet de définir ne application de \mathbb{R} dans \mathbb{R}^n vérifiant :

$$\forall t \in \mathbb{R}, Z'(t) = e'_A(t) \left(Z_0 + \int_0^t e_A(-s)g(s)ds \right) + e_A(t)e_A(-t)g(t) = AZ(t) + g(t)$$

Comme $Z(0) = e_A(0)Z_0 = I_nZ_0 = Z_0$, Z est la solution maximale (sur \mathbb{R}) du problème de Cauchy (U).

- (b) Si $\tilde{Z}: I \to \mathbb{R}^n$ est une solution de classe \mathcal{C}^1 de (U) sur un intervalle ouvert contenant 0, alors , par application du théorème 1 (équation du type Y' = f(Y) avec $f(\mathcal{C}^1)$, $\tilde{Z}(t) = Z(t)$ pour tout $t \in I$.
- 10. (a) Soit a > 0. On résout l'équation différentielle $(E): y' \lambda y = g$ en utilisant la méthode de variation de la constante. Soit $y \in \mathcal{C}^1(\mathbb{R})$ et k la fonction telle que $\forall t \in \mathbb{R}, \ y(t) = k(t)e^{\lambda t}$.

y solution de
$$(E)$$
 sur $\mathbb{R}_+ \Leftrightarrow \forall t \in \mathbb{R}, k'(t)e^{\lambda t} = g(t)$

Les solutions sont donc de la forme

$$y(t) = e^{\lambda t} \left(y_0 + \int_0^t e^{-\lambda s} g(s) ds \right)$$

Comme $g(t) = +\infty$ $o(e^{-at})$, pour tout $\varepsilon > 0$, il existe $M \ge 0$ tel que

$$s \ge M \Rightarrow |g(s)| \le \varepsilon e^{-as}$$

Soit donc ε fixé et M associé :

$$t \ge M \Rightarrow |y(t)| \le e^{\lambda t} |y_0| + \varepsilon e^{\lambda t} \int_0^t e^{-(\lambda + a)s} ds$$
 avec $\lambda < -a$

$$t \ge M \Rightarrow |y(t)| \le e^{\lambda t}|y_0| + \varepsilon e^{\lambda t} \frac{e^{-(\lambda + a)t} - 1}{-(\lambda + a)}$$

Pour $t \geq M$:

$$e^{at}|y(t)| \le e^{(a+\lambda)t}|y_0| + \varepsilon e^{(\lambda+a)t} \frac{e^{-(\lambda+a)t} - 1}{-(\lambda+a)} \le e^{(a+\lambda)t}|y_0| + \frac{\varepsilon}{-(\lambda+a)} \left(1 - e^{(\lambda+a)t}\right)$$

Comme $\lambda + a < 0$ cette expression tend vers $\frac{\varepsilon}{-(\lambda + a)}$ quand t tend vers

 $+\infty$. Pour tout $\varepsilon' > 0$ on choisit $\varepsilon > 0$ tel que $-(\lambda + a)\varepsilon' = 2\varepsilon$. Pour t assez grand, $e^{at}|y(t)| \leq \frac{2\varepsilon}{-(\lambda + a)} = \varepsilon'$.

On a donc établi que $y(t) =_{+\infty} o(e^{-at})$.

(b) Si A est une matrice triangulaire supérieure de coefficients diagonaux $\lambda_1, ..., \lambda_n$, le système différentiel à résoudre est un système différentiel qu'on résout en commençant par la dernière équation. Notons $y_1, ..., y_n$ les fonctions coordonnées de Y.

On obtient à chaque ligne une équation du type $y'_1 = \lambda_i y_i + g_i$, où g_i est obtenu comme combinaison linéaire des y_j , $j \ge i$.

On raisonne par récurrence descendante.

$$y_n(t) = c^{\lambda_n t} = o_{+\infty}(e^{-at}) \operatorname{car} \lambda_n < -a.$$

Supposons ce résultat établi pour $y_{i+1},...,y_n$. On a $g_i=o_{+\infty}(e^{-at})$. Le résultat de la question précédente montre que $y_i(t) = o_{+\infty}(e^{-at})$.

Par suite $e^{at}||Y(t)|| = \sqrt{\sum_{i=1}^{n} (e^{at}y_i(t))^2}$ tend vers 0 quand t tend vers $+\infty$.

On a bien : $||Y(t)|| = o_{+\infty}(e^{-at})$.

(c) Si le polynôme caractéristique de A est scindé sur \mathbb{R} , A est trigonalisable . Notons K le maximum des valeurs propres. Par hypothèse K < 0 et en prenant a = -K/2, pour chaque valeur propre λ_i , $\lambda_i < -a$.

Soit T la matrice triangulaire semblable à A. D'après la question 10.b) les solutions de Y' = TY vérifient toutes $||Y(t)|| = o_{+\infty}(e^{-at})$.

Prenons une solution de valeur initiale e_i , un des vecteurs de la base canonique. On obtient la colonne d'indice i de $e_T(t)$ dont toutes les fonctions coordonnées sont négligeables devant e^{-at} . Il en est de même pour toutes les fonctions coordonnées de $e_T(t)$ et, comme toutes les normes sont équivalentes dans $\mathcal{M}_n(\mathbb{R})$, $|||e_T(t)||| = o_{+\infty}(e^{-at})$.

Mais d'après la question 7.b) $e_A(t) = Pe_T(t)P^{-1}$ avec $A = PTP^{-1}$ donc $|||e_A(t)||| \le |||e_T(t)||| \times |||P||| \times |||P^{-1}|||$. On a donc par majoration

$$|||e_A(t)||| = o_{+\infty}(e^{-at}).$$

- **11.** $A \in O_n(\mathbb{R})$, $A^2 + I_n = 0$.
 - (a) Le polynôme $X^2 + 1$ est scindé à racines simples dans \mathbb{C} . C'est un polynôme annulateur de A. Cette matrice est donc \mathbb{C} -diagonalisable et son spectre est inclus dans $\{-i,i\}$. Mais le polynôme caractéristique de A est

à coefficients réels. Donc si α est une racine d'ordre r de ce polynôme, $\overline{\alpha}$ est racine d'ordre r de ce polynôme. Le spectre de A est donc exactement $sp_{\mathbb{C}}(A) = \{-i, i\}$ et $\chi_A(z) = (-1)^{2r}(z-i)^r(z+i)^r = (z^2+1)^r$. Le degré de ce polynôme est n = 2r. n est un entier pair.

(b) On peut construire une famille orthonormale de n vecteurs $(\varepsilon_1, \varepsilon_1', ..., \varepsilon_r, \varepsilon_r')$ tels que pour tout i, $A\varepsilon_i = \varepsilon_i'$ et donc $A\varepsilon_i' = -\varepsilon_i$. A est orthogonalement semblable à une matrice Δ diagonale par blocs formée de r blocs carrés $A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. On résout facilement le système différentiel :

$$\left\{ \begin{array}{l} x' = -y \\ y' = x \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x'' = -x \\ y = -x' \end{array} \right. \Leftrightarrow \exists (a,b) \in \mathbb{R}^2/, \forall t \in \mathbb{R}, \left\{ \begin{array}{l} x(t) = a\cos t + b\sin t \\ y(t) = a\sin t - b\cos t \end{array} \right.$$

avec x(0) = a et y(0) = -b. Pour toute solution Y_1 de ce système on a donc $||Y_1(t)||^2 = a^2 + b^2 = ||Y_1(0)||^2$.

Par suite $||e_{A_1}(t)|||=1$. De la même manière $||e_{\Delta}(t)|||=1$.

On remarque que la matrice $e_{\Delta}(t)$ est orthogonale. A est orthogonalement semblable à Δ . Il existe $P \in O_n(\mathbb{R})$ telle que $A = P\Delta P^{-1}$. D'après la question 7.a) $e_A(t) = Pe_{\Delta}(t)P^{-1}$. La matrice $e_A(t)$ est donc également orthogonale. Par suite, pour tout vecteur Y_0 de \mathbb{R}^n , les vecteurs $e_A(t)Y_0$ et $P^{-1}e_A(t)PY_0$ ont même norme.

Par définition de la norme triple :

$$|||e_A(t)||| = |||P^{-1}e_A(t)P||| = |||e_\Delta(t)||| = 1.$$

Troisième partie : linéarisation

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R}^2)$. Dans cette partie on s'intéresse à la solution de

$$(S) \begin{cases} Y' = f(Y) \\ Y(0) = Y_0 \end{cases}$$

- **12.** Soit $Y: [0, +\infty[\to \mathbb{R}^2 \text{ une solution de } (S). \text{ On suppose que } \lim_{t \to +\infty} Y(t) = l \in \mathbb{R}^2$ existe. On suppose que $f(l) \neq 0$.
 - (a) Pour tout t, Y'(t) = f(Y(t)) et $\langle Y'(t), f(l) \rangle = \langle f(Y(t)), f(l) \rangle$. Par continuité du produit scalaire et composition de limites :

$$\lim_{t \to +\infty} \langle f(Y(t)), f(l) \rangle = ||f(l)||^2.$$

Par définition de la limite, il existe M>0 tel que, $\forall t\in [M,+\infty[,\langle f(Y(t)),f(l)\rangle\in[||f(l)||^2-r,||f(l)||^2+r]$ avec r>0 quelconque.

En prenant $r = \frac{||f(l)||^2}{2}$ on peut affirmer qu'il existe M > 0 tel que

$$t \ge M \Rightarrow \langle Y'(t), f(t) \rangle \ge \frac{1}{2} ||f(l)||^2.$$

(b) Soit alors $H: t \mapsto \langle Y(t), f(l) \rangle - (t - M) \frac{||f(l)||^2}{2} - \langle Y(M), f(l) \rangle$. H est continue dérivable sur $[M, +\infty[$ avec :

$$\forall t \ge M, \ H'(t) = \langle Y'(t), f(l) \rangle - \frac{||f(l)||^2}{2} \ge 0$$

H est donc croissante et pour $t \geq M$, $H(t) \geq H(M) = 0$. On a donc :

$$\forall t \in [M, +\infty[, \langle Y(t), f(l) \rangle \ge (t - M) \frac{||f(l)||^2}{2} + \langle Y(M), f(l) \rangle.$$

- (c) Dans l'inégalité précédente la limite du minorant est $+\infty$ quand t tend vers $+\infty$. Or la quantité majorante tend vers $\langle l, f(l) \rangle$. Contradiction. D'où f(l) = 0.
- 13. Dans cette question on suppose que

$$f: \begin{pmatrix} y \\ z \end{pmatrix} \mapsto \begin{pmatrix} z + \alpha(y^2 + z^2) \\ -y + \alpha(y^2 + z^2) \end{pmatrix}$$

où $\alpha \in \mathbb{R}$. Soit $Y: I \to \mathbb{R}^2$ la solution maximale de (S).

- (a) Si $\alpha = 0$, on retrouve le système étudié en 11.b). Les solutions maximales sont définies sur \mathbb{R} et les trajectoires sont des cercles $(z^2 + y^2)$ est une fonction constante).
- (b) $\alpha < 0$; on admet dans que $[0, +\infty[\subset I]$. lorsque $\alpha < 0$. Soit $u: t \mapsto ||Y(t)||^2$. u est \mathcal{C}^1 sur I avec

$$\forall t \in I, \ u'(t) = 2 \langle Y'(t), Y(t) \rangle = 2 y^2(t) \alpha(y^2(t) + z^2(t)) + 2 y^2(t) \alpha(z^2(t) + z^2(t)) = 2 \alpha u^2(t)$$

La fonction u est positive et décroissante sur I ($\alpha < 0$). Elle admet donc une limite en $+\infty$.

Si pour un certain t_0 $u(t_0)=0$ alors, par décroissance u(t)=0 pour $t\geq t_0$. La limite est nulle.

Si pour tout t, $u(t) \neq 0$

$$u'/2u^2 = \alpha \Rightarrow \exists K \in \mathbb{R}/\forall t \in I, -1/(2u) = \alpha t + K$$

On a donc

$$\forall t \in I, ||Y(t)||^2 = u(t) = \frac{-1}{2(\alpha t + K)}$$

Dans les deux cas la limite est nulle et $\lim_{t\to +\infty} Y(t) = 0$.

(c) On suppose $Y_0 \neq 0$, $\alpha > 0$. La solution est non nulle sur un voisinage de 0 et vérifie

$$||Y(t)||^2 = \frac{-1}{2(\alpha t + K)} \operatorname{avec} \quad ||Y(0)||^2 = ||Y_0||^2 = \frac{-1}{2K}$$

Comme la fonction u est croissante, pour tout t de I, $u(t) \ge u(0) > 0$ et l'expression de $||Y(t)||^2$ est celle donnée plus haut.

Notons $T = \frac{1}{2\alpha ||Y_0||^2}$. Si Y est définie sur [0, T[, alors, d'après l'expression précédente, $\lim_{t\to T}||Y(t)||^2=+\infty$. La solution Y ne peut donc être définie en T et I, intervalle qui contient

0, vérifie. $I \subset]-\infty, T[.$

- 14. Dans cette question, on suppose qu'il existe une matrice $A \in \mathcal{M}_2(\mathbb{R})$ dont le polynôme caractéristique est scindé sur \mathbb{R} , dont toutes les valeurs propres sont strictement négatives et telle que ||f(x) - Ax|| = o(||x||) quand $x \to 0$.
 - (a) D'après l'inégalité on a nécessairement f(0) = 0. De plus f(x) = f(0) + 1Ax + o(||x||) donc $x \mapsto Ax$ est l'application linéaire tangente en 0. Sa matrice dans la base canonique, A, est la matrice jacobienne de f en 0. Cela suffit????
 - (b) Soit $Y: I \to \mathbb{R}^2$ la solution maximale de (S). Soit $F: t \mapsto e_A(-t)Y(t)$. F est dérivable sur I et $\forall t \in I$, $F'(t) = -e'_A(-t)Y(t) + e_A(-t)Y'(t) = -Ae_A(-t)Y(t) + e_A(t)f(Y(t)).$ Nous allons démontrer en fin de question que , pour tout s, $e_A(s)$ et Acommutent. D'où $F'(t) = e_A(-t)(-AY(t) + f(Y(t)))$. On a alors:

$$F(t) - F(0) = e_A(-t)Y(t) - Y_0 = \int_0^t e_A(-s)(-AY(s) + f(Y(s)))ds$$
$$Y(t) = e_A(t)\left(Y_0 + \int_0^t e_A(-s)(-AY(s) + f(Y(s)))ds\right)$$

Si L est une application linéaire on a $L\left(\int_a^b f(u)du\right) = \int_a^b L(f(u))du$ donc:

$$Y(t) = e_A(t)Y_0 + \int_0^t e_A(t)e_A(-s)(-AY(s) + f(Y(s)))ds$$
$$Y(t) = e_A(t)Y_0 + \int_0^t e_A(t-s)(-AY(s) + f(Y(s)))ds$$

Pour $t \ge 0$ on obtient :

$$||Y(t)|| \le |||e_A(t)||||Y_0|| + \int_0^t |||e_a(t-s)||| \times ||f(Y(s)) - AY(s)||ds||$$

La matrice A vérifie les hypothèses de la question 10.c) et donc il existe a>0 tel que $|||e_A(t)|||=o_{+\infty}(e^{-at})$. La fonction $t\mapsto e^{at}|||e_A(t)|||$ est bornée sur \mathbb{R}^+ . Soit K un majorant.

Pour tout réel x positif, $|||e_A(x)||| \le Ke^{-ax}$.

On obtient $(t - s \ge 0 \text{ si } s \in [0, t])$:

$$||Y(t)|| \le Ke^{-at}||Y_0|| + \int_0^t e^{-a(t-s)} \times ||f(Y(s)) - AY(s)||ds$$

Si de plus on a

$$\forall s \in [0, t], ||f(Y(s)) - AY(s)|| \le \varepsilon ||Y(s)||.$$

X-ENS-ESPCI Maths 12 - Corrigé proposé pour UPS par H.Demongeot - 10 sur 12

alors

$$||Y(t)|| \le Ke^{-ta} \left(||Y_0|| + \int_0^t e^{sa} \varepsilon ||Y(s)|| ds \right)$$

Remarque : $e_A(t)$ et A commutent. En effet $A = e'_A(0) = \lim_{s \to 0} \frac{e_A(s) - I_n}{s}$. Pour t fixé :

$$Ae_A(t) = \lim_{s \to 0} \frac{e_A(s+t) - e_A(t)}{s} = e_A(t) \lim_{s \to 0} \frac{e_A(s) - I_n}{s} = \lim_{s \to 0} \frac{e_A(s) - I_n}{s} e_A(t) = e_A(t)A$$

(c) Soit $\varepsilon > 0$. Il existe un voisinage V de 0 dans \mathbb{R}^2 tel que $x \in V \Rightarrow ||f(x) - Ax|| \leq \varepsilon ||x||$. Soit r > 0 tel que $||x|| < r \Rightarrow x \in V$. Prenons Y_0 tel que $||Y_0|| < r$; par continuité de Y il existe un intervalle $[0, t_1]$ tel que sur cet intervalle $Y(t) \in V$. Sur cet intervalle la condition précédente est vérifiée et

$$||e^{ta}Y(t)|| \le K\left(||Y_0|| + \int_0^t e^{sa}\varepsilon||Y(s)||ds\right)$$

On peut appliquer le résultat de la question 8.a)

$$\forall t \in [0, t_1], ||Y(t)e^{at}|| \le K||Y_0||e^{\varepsilon K||Y_0||t}$$

$$\forall t \in [0, t_1], ||Y(t)|| < K||Y_0||e^{(\varepsilon K||Y_0||-a)t}$$

Prenons de plus Y_0 tel que $K||Y_0|| < r$ et $\varepsilon K||Y_0|| < a/2$. On obtient avec les trois conditions sur $||Y_0||$ un réel $\delta > 0$ tel que

$$\forall t \in [0, t_1], ||Y(t)|| < re^{(-a/2)t} \le r$$

Cette inégalité est vraie pour t_1 et peut donc se prolonger tant que ||Y(t)|| < r. Elle est vraie sur \mathbb{R}^+ et on a mis en évidence b > 0, $\delta > 0$ et C > 0 tels que pour $Y_0 \in \mathbb{R}^2$ avec $||Y_0|| \leq \delta$ on a

$$\forall t \in [0, +\infty[, ||Y(t)|| \le Ce^{-bt}.$$

(d) Soit $y:[0,+\infty[\to\mathbb{R} \text{ et } z:[0,+\infty[\to\mathbb{R} \text{ des fonctions de classe } \mathcal{C}^1 \text{ qui vérifient}]$

$$\begin{cases} y' = zy(1-y) \\ z' = y - z \\ y(0) = y_0, \quad z(0) = z_0 \end{cases}$$

où $y_0 \in \mathbb{R}$ et $z_0 \in \mathbb{R}$.

Effectuons le changement de fonctions inconnues $y = 1 + y_1$, $z = 1 + z_1$. On obtient le système

$$\begin{cases} y_1' = (1+z_1)(1+y_1)(-y_1) \\ z_1' = y_1 - z_1 \end{cases}$$

On a un système du type précédent $Y_1' = f(Y_1)$, f de classe \mathcal{C}^1 et la matrice jacobienne de f en 0 est $A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$. Le polynôme caractéristique est scindé, il y a une seule valeur propre, -1, strictement négative.

Le résultat de la question 14.c) s'applique et il existe $\delta > 0$ tel que si $||Y_1(0)|| \leq \delta$, alors $||Y_1(t)|| \leq Ce^{-bt}$. La limite de $||Y_1(t)||$ est donc 0, Y_1 tend vers 0 et Y tend vers (1,1). Par suite il existe $\delta > 0$ tel que si $|y_0 - 1|^2 + |z_0 - 1|^2 \leq \delta^2$, alors y(t) et z(t) tendent vers 1 lorsque t tend vers $+\infty$.