MINES-PONTS 2008 - PSI - ÉPREUVE 1

I. Préliminaires

- 1. On reconnaît des polynômes d'interpolation de Lagrange, on a notamment la relation $L_i(a_j) = \delta_{ij}$ (symbole de Kronecker) pour tout couple $(i,j) \in [\![0,n]\!]^2$. Ainsi, si $\lambda_0, \dots, \lambda_n$ sont des scalaires tels que $\sum_{i=0}^n \lambda_i L_i = 0$, en évaluant cette égalité au point a_j , on obtient $\lambda_j = 0$: la famille (L_0, \dots, L_n) est donc libre. Comme elle est de cardinal n+1, c'est une base de $\mathbb{C}_n[X]$.
- 2. Notons d'abord que, si P est un polynôme de $\mathbb{C}_n[X]$, sa décomposition dans la base (L_0, \dots, L_n) est $P = \sum_{i=0}^n P(a_i) L_i$. En effet, on écrit $P = \sum_{i=0}^n \lambda_i L_i$ et, en évaluant au point a_j , on obtient $\lambda_j = P(a_j)$.

Ainsi, pour tout $j \in [0, n]$, on a $X^j = \sum_{i=0}^n a_i^j L_i$. Donc la matrice M demandée est $M = (m_{ij})_{0 \le i, j \le n} \in \mathcal{M}_{n+1}(\mathbb{C})$, avec $m_{ij} = a_i^j$: c'est une matrice de Vandermonde

$$M = \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix} .$$

II. Fonctions polynomiales

3. Pour tout $j \in [0, k]$, on a $t_a(X^j) = (X + a)^j = \sum_{i=0}^j \binom{j}{i} a^{j-i} X^i$ par la formule du binôme de Newton. Le coefficient d'indices (i, j) de la matrice $T_a \in \mathcal{M}_{k+1}(\mathbb{C})$ (en indexant les lignes et les colonnes de 0 à k) est donc nul si i > j, et vaut $\binom{j}{i} a^{j-i}$ si $i \leq j$. Par ailleurs, $d(X^j) = j X^{j-1}$ pour tout $j \in [1, k]$, donc

$$D = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 2 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & k \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \quad \text{et} \quad T_a = \begin{pmatrix} 1 & a & a^2 & \cdots & a^k \\ 0 & 1 & 2a & \cdots & ka^{k-1} \\ \vdots & \ddots & 1 & \cdots & \binom{k}{2}a^{k-2} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}.$$

- 4. Les matrices D et T_a sont triangulaires supérieures, leurs valeurs propres sont donc leurs coefficients diagonaux.
 - Ainsi, $\operatorname{Sp}(d) = \{0\}$. Il apparaît immédiatement que D est de rang k, donc le sous-espace propre $E_0(d) = \operatorname{Ker} d$ est de dimension 1, et $E_0(d) = \operatorname{Vect}(e_0) = \mathbb{C}_0[X]$ (ce qui est d'ailleurs évident sans passer par la représentation matricielle).
 - De même, $\operatorname{Sp}(t_a) = \{1\}$ et la matrice $T_a I_{k+1}$ est visiblement de rang k, donc le sous-espace propre $E_1(t_a)$ est de dimension 1, et on a facilement $E_1(t_a) = \operatorname{Vect}(e_0) = \mathbb{C}_0[X]$.
- 5. On remarque d'abord que les sous-espaces vectoriels $\mathbb{C}_i[X]$ $(0 \le i \le k)$, ainsi que $\{0\}$, sont stables par l'opérateur de dérivation d, ce qui donne déjà k+2 sous-espaces vectoriels stables. Ce sont les seuls.

En effet, si F est un sous-espace vectoriel de E stable par d et non réduit à $\{0\}$, soit $m = \max_{Q \in F} (\deg Q)$, soit P un polynôme appartenant à F et de degré m. On a déjà l'inclusion

- $F \subset \mathbb{C}_m[X]$. D'autre part, les m+1 polynômes $P, d(P), \dots, d^m(P)$ appartiennent à F et forment une famille libre (ils sont non nuls et de degrés deux à deux distincts, polynômes "échelonnés en degrés"), donc dim $F \geq m+1$, d'où $F = \mathbb{C}_m[X]$.
- **6.** Le polynôme $\frac{d^{j}(P)}{j!}$ est de degré k-j $(0 \leq j \leq k)$, la famille \mathcal{B}_{1} est échelonnée en degrés donc libre, c'est donc une base de $E = \mathbb{C}_{k}[X]$ puisqu'elle est de cardinal k+1. Pour $j \in [0, k]$, on obtient facilement

$$\frac{d^{j}(P)}{j!} = \sum_{i=0}^{k-j} \frac{(i+1)(i+2)\cdots(i+j)}{j!} p_{i+j} X^{i} = \sum_{i=0}^{k-j} {i+j \choose j} p_{i+j} X^{i}.$$

La matrice $R=P_{\mathcal{B},\mathcal{B}_1}=(r_{ij})_{0\leq i,j\leq k}\in\mathcal{M}_{k+1}(\mathbb{C})$ est donc donnée par

$$r_{ij} = \begin{cases} 0 & \text{si} \quad i+j > k \\ \binom{i+j}{j} p_{i+j} & \text{si} \quad i+j \le k \end{cases}, \text{ ou encore}$$

$$R = \begin{pmatrix} p_0 & p_1 & p_2 & \cdots & p_k \\ p_1 & 2p_2 & 3p_3 & \cdots & kp_k & 0 \\ p_2 & 3p_3 & 6p_4 & 0 & \vdots \\ \vdots & \vdots & 0 & \vdots \\ \vdots & kp_k & 0 & \vdots \\ p_k & 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

Remarque. La matrice R est symétrique.

7. La formule de Taylor pour les polynômes donne, pour $j \in [0, k]$,

$$P(X + ja) = \sum_{i=0}^{k} \frac{P^{(i)}(X)}{i!} (ja)^{i} = \sum_{i=0}^{k} j^{i} a^{i} \frac{d^{i}(P)}{i!}.$$

On en déduit la matrice $U = M_{\mathcal{B}_1}(S) = (u_{ij})_{0 \leq i,j \leq k} \in \mathcal{M}_{k+1}(\mathbb{C})$ avec $u_{ij} = a^i j^i$, soit

$$U = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & a & 2a & \cdots & ka \\ 0 & a^2 & 4a^2 & \cdots & k^2a^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & a^k & 2^k a^k & \cdots & k^k a^k \end{pmatrix} .$$

La matrice U est inversible (on calcule son déterminant et, après avoir "sorti" le facteur a^i de la ligne numéro i, $0 \le i \le k$), on reconnaît un déterminant de Vandermonde :

$$\det U = \left(\prod_{i=0}^k a^i\right) \prod_{0 \le i < j \le k} (j-i) \ne 0.$$

Remarque. Sans calcul de déterminant, on peut noter que U est la transposée de la matrice M construite à la question $\mathbf{2}$ si on choisit $a_i = i \, a$ pour $i \in [\![0,k]\!]$; elle est donc inversible puisque M est une matrice de passage.

On en déduit que la famille S est une base, notée \mathcal{B}_2 , de l'espace vectoriel E, et que $U = P_{\mathcal{B}_1,\mathcal{B}_2}$ (matrice de passage).

- **8.** On a $Q = P_{\mathcal{B}, \mathcal{B}_2} = P_{\mathcal{B}, \mathcal{B}_1} P_{\mathcal{B}_1, \mathcal{B}_2} = RU$.
- 9. Raisonnement analogue à celui de la question $\mathbf{5}$: les sous-espaces vectoriels $\mathbb{C}_i[X]$ $(0 \le i \le k)$ et $\{0\}$ sont stables par t_a et ce sont les seuls. En effet, si F est un sous-espace vectoriel de E stable par t_a et non réduit à $\{0\}$, on introduit un polynôme P de degré maximal m appartenant à F: on a alors $F \subset \mathbb{C}_m[X]$, et les m+1 polynômes P, $t_a(P)$, \cdots , $t_a^m(P)$ appartiennent à F et forment une base de $\mathbb{C}_m[X]$ d'après la question $\mathbf{7}$, donc $F = \mathbb{C}_m[X]$.

III. Fonctions continues, 2π -périodiques

10. L'application φ_a est un morphisme de groupes de $(\mathbf{Z},+)$ vers (\mathbb{C}^*,\times) puisque $e^{ina}\neq 0$ et

$$\varphi_a(n+p) = e^{i(n+p)a} = e^{ina} e^{ipa} = \varphi_a(n) \varphi_a(p)$$
.

Son noyau est

$$\operatorname{Ker} \varphi_a = \varphi_a^{-1}(\{1\}) = \{n \in \mathbf{Z} \mid e^{ina} = 1\} = \{n \in \mathbf{Z} \mid \exists k \in \mathbf{Z} \quad na = 2k\pi\}.$$

Le morphisme φ_a est injectif si et seulement si Ker $\varphi_a = \{0\}$, c'est-à-dire si et seulement si le rapport $\frac{a}{\pi}$ est irrationnel.

Si ce rapport est rationnel, alors il existe $p \in \mathbf{Z}$ et $q \in \mathbb{N}^*$ tels que $a = 2\pi \frac{p}{q}$ et on vérifie alors que $\forall n \in \mathbf{Z}$ $\varphi_a(n+q) = e^{i(n+q)a} = e^{ina} e^{2i\pi p} = \varphi_a(n)$,

donc l'application φ_a est q-périodique.

Remarque. On peut préciser en utilisant le théorème de Gauss (hors programme PSI) que, si $\frac{a}{2\pi} = \frac{p}{q}$ avec $p \in \mathbf{Z}^*$ et $q \in \mathbb{N}^*$ premiers entre eux, alors $\operatorname{Ker} \varphi_a = q \mathbf{Z}$, et l'entier q est alors la plus petite période (strictement positive) de l'application φ_a .

11. On calcule

$$c_n(t_a(f)) = \frac{1}{2\pi} \int_0^{2\pi} f(x+a) e^{-inx} dx = \frac{1}{2\pi} \int_a^{a+2\pi} f(y) e^{-in(y-a)} dy$$
$$= e^{ina} \frac{1}{2\pi} \int_0^{2\pi} f(y) e^{-iny} dy = e^{ina} c_n(f).$$

On a utilisé le changement de variable y = x + a et le fait que l'intégrale d'une fonction continue et 2π -périodique est la même sur tout intervalle de longueur 2π .

12. Notons d'abord que $\forall (f,g) \in E^2$ $f = g \iff \forall n \in \mathbf{Z}$ $c_n(f) = c_n(g)$, c'est un résultat du cours. Donc

$$t_a(f) = \lambda f \iff \forall n \in \mathbf{Z} \quad c_n(t_a(f)) = c_n(\lambda f)$$

 $\iff \forall n \in \mathbf{Z} \quad e^{ina} c_n(f) = \lambda c_n(f) .$

Si $f \in E$ est non nul, il existe au moins un entier n tel que $c_n(f) \neq 0$. Donc, pour que $\lambda \in \mathbb{C}$ soit valeur propre de t_a , il est nécessaire que l'on ait $\lambda = e^{ina}$ pour un certain

- $n \in \mathbf{Z}$. Réciproquement, si $\lambda = e^{ina}$, alors la fonction e_n est vecteur propre de t_a pour la valeur propre λ (vérification directe de $e_n(x+a) = \lambda \, e_n(x)$). Les valeurs propres de t_a sont donc exactement les nombres complexes de la forme e^{ina} pour n décrivant \mathbf{Z} . Précisons maintenant en distinguant deux cas :
- si $\frac{a}{\pi}$ est irrationnel, alors l'application $\varphi_a : n \mapsto e^{ina}$ est injective, il y a donc une infinité (dénombrable) de valeurs propres et, pour tout $n \in \mathbf{Z}$, le sous-espace propre associé à la valeur propre $\lambda_n = e^{ina}$ est la droite vectorielle $\operatorname{Vect}(e_n)$ puisque

$$t_{a}(f) = e^{ina} f \iff \forall m \in \mathbf{Z} \quad c_{m}(t_{a}(f)) = c_{m}(e^{ina}f)$$

$$\iff \forall m \in \mathbf{Z} \quad e^{ima} c_{m}(f) = e^{ina} c_{m}(f)$$

$$\iff \forall m \in \mathbf{Z} \setminus \{n\} \quad c_{m}(f) = 0$$

$$\iff f \in \text{Vect}(e_{n}).$$

- si $\frac{a}{\pi}$ est rationnel, on peut écrire $a=2\pi\,\frac{p}{q}$ avec $p\in\mathbf{Z}$ et $q\in\mathbb{N}^*$. La fonction φ_a est alors q-périodique, l'endomorphisme t_a admet alors au plus q valeurs propres distinctes et, si on fixe $n\in\mathbf{Z}$, les fonctions e_{n+kq} ($k\in\mathbf{Z}$) appartiennent au sous-espace propre associé à la valeur propre e^{ina} (vérification directe), donc (ces fonctions étant linéairement indépendantes) les sous-espaces propres sont de dimension infinie.
 - Remarque hors programme. Si $a=2\pi\,\frac{p}{q}$ avec $p\in {\bf Z}^*$ et $q\in {\bf N}^*$ premiers entre eux, l'endomorphisme t_a admet exactement q valeurs propres distinctes et, pour $n\in {\bf Z}$ donné, le sous-espace propre associé à la valeur propre e^{ina} est constitué des fonctions f de E telles que $c_m(f)=0$ pour tout entier relatif m n'appartenant pas à $n+q{\bf Z}$.
- 13. Les p+1 fonctions f, $t_a(f)$, \cdots , $t_a^p(f)$ appartiennent à F, donc forment une famille liée : il existe donc des coefficients α_0 , \cdots , α_p non tous nuls tels que $\sum_{i=0}^p \alpha_i t_a^j(f) = 0$, soit

$$\sum_{j=0}^{p} \alpha_j t_{ja}(f) = 0. \text{ On a alors } c_n \left(\sum_{j=0}^{p} \alpha_j t_{ja}(f) \right) = 0, \text{ soit } \left(\sum_{j=0}^{p} \alpha_j e^{inja} \right) c_n(f) = 0 \text{ pour tout entier relatif } n.$$

- 14. On suppose dans cette question (ainsi que dans toutes les suivantes, et l'énoncé devrait le préciser!) que $\frac{a}{\pi}$ est irrationnel. Soit $f \in F$. Si f = 0, la propriété à démontrer est évidente. Sinon, soient $\alpha_0, \cdots, \alpha_p$ des scalaires non tous nuls choisis comme dans la question 13. Le polynôme $P = \sum_{j=0}^p \alpha_j X^j$ est non nul et de degré au plus p, il admet donc au plus p racines
 - distinctes. On ne peut avoir $c_n(f) \neq 0$ que si $P(e^{ina}) = 0$, c'est-à-dire si e^{ina} est une des racines de P; comme $\varphi_a : n \mapsto e^{ina}$ est injective, cela se produit pour au plus p entiers relatifs n distincts. L'ensemble $\{n \in \mathbf{Z} \mid c_n(f) \neq 0\}$ est fini, donc borné; il existe donc un entier naturel N_f tel que $|n| \geq N_f \Longrightarrow c_n(f) = 0$.
- **15.** Soit (f_1, \dots, f_p) une base de F, soit $N = \max\{N_{f_1}, \dots, N_{f_p}\}$. Pour tout entier relatif n tel que $|n| \geq N$, on a $c_n(f_j) = 0$ pour tout $j \in [\![1,p]\!]$ donc, par linéarité des coefficients de Fourier, $c_n(g) = 0$ pour tout $g \in \text{Vect}(f_1, \dots, f_p) = F$.

- 16. L'ensemble $G=\mathrm{Vect}(e_k\ ,\ -N\leq k\leq N)$ est l'espace vectoriel des polynômes trigonométriques de degré au plus N, il est de dimension 2N+1.
 - Si $g \in F$, on a $c_n(g)=0$ pour $|n| \geq N$, donc g a les mêmes coefficients de Fourier que le polynôme trigonométrique $h=\sum_{k=-N}^N c_k(f)e_k$, donc $g=h\in G$. On a donc l'inclusion $F\subset G$.
 - Enfin, G est stable par t_a car les fonctions e_k , $-N \le k \le N$ sont vecteurs propres de t_a .
- 17. Notons τ l'endomorphisme de G induit par t_a . Il est diagonalisable puisque G admet une base $(e_k)_{-N \le k \le N}$ constituée de vecteurs propres de τ .
- 18. Soit τ' l'endomorphisme de F induit par t_a (et donc aussi par τ). Comme c'est l'endomorphisme induit par un endomorphisme diagonalisable de G sur un sous-espace stable, il est lui aussi diagonalisable (cours). On peut donc trouver une base de F constituée de vecteurs propres de τ' (et donc de τ , ou de t_a). Mais, comme τ est diagonalisable avec des valeurs propres toutes distinctes (les e^{ika} , $-N \leq k \leq N$), les vecteurs propres de τ sont tous colinéaires à des vecteurs e_k avec $k \in [-N, N]$. Une telle base de F est donc de la forme $(e_k)_{k \in S}$, avec $S \subset [-N, N]$.