E3A 2020 - MP Corrigé

pour l'UPS, François Calio, MP Marceau Chartres

Exercice 1

1. On considère la famille $(p_k)_{k\in\mathbb{N}}=\left(p\,q^k\right)_{k\in\mathbb{N}}$. C'est une famille de réels positifs sommable de somme 1 (on reconnait la somme des termes d'une suite géométrique de raison $q \in]0,1[$.

Ainsi elle définit une loi de probabilité dont elle est la famille des probabilités élémentaires.

- **2.** On pose X'=X+1. On a X' variable aléatoire, $X'(\Omega)=\mathbb{N}^*$ et $\forall k\in\mathbb{N}^*, \left(X'=k\right)=\left(X=k-1\right)$ donc $\mathbb{P}(X'=k)=pq^{k-1}:X'$ suit donc une loi géométrique de paramètre p. Ainsi X' possède une espérance et donc, par linéarité de l'espérance, X possède une espérance et $\mathbb{E}(X') = \mathbb{E}(X) - 1 = \frac{1}{p} - 1$ i.e. $\mathbb{E}(X) = \frac{q}{p}$
- **3.** La famille $((X=k))_{k\in\mathbb{N}}$ forme un système complet d'événements, donc $(X=Y)=\bigcup_{k\in\mathbb{N}}((X=k)\cap(Y=X))$.

Ainsi par σ -additivité, $\sum_{k} \mathbb{P}((X=k) \cap (Y=k))$ converge et $\mathbb{P}(X=Y) = \sum_{k=0}^{+\infty} \mathbb{P}((X=k) \cap (Y=k))$. Or X et

Y sont indépendantes donc $\mathbb{P}((X=k)\cap (Y=k))=\mathbb{P}(X=k)\times \mathbb{P}(Y=k)=p^2q^{2k}$

Ainsi
$$\mathbb{P}(X = Y) = \sum_{k=0}^{+\infty} p^2 (q^2)^k = p^2 \frac{1}{1 - q^2} = \frac{p(1 - q)}{(1 + q)(1 - q)} \operatorname{donc} \left[\mathbb{P}(X = Y) = \frac{p}{1 + q} \right]$$

La famille ((X = Y), (X < Y), (X > Y)) forme un système complet dévénements.

Or par symétrie,
$$\mathbb{P}(X < Y) = \mathbb{P}(X > Y)$$
. Ainsi, $\mathbb{P}(X < Y) = \frac{1}{2}(1 - \mathbb{P}(X = Y))$, i.e. $\boxed{\mathbb{P}(X < Y) = \frac{q}{1 + q}}$

On pouvait aussi calculer la probabilité : $\mathbb{P}(Y > k) = \sum_{j=k+1}^{+\infty} pq^j = q^{k+1}$ pour en déduire la probabilité $\mathbb{P}(X < Y)$ via la formule

$$\mathbb{P}(X < Y) = \sum_{k=0}^{\infty} \mathbb{P}(X = k) \mathbb{P}(Y > k)...$$

4. S = X + Y avec X et Y à valeurs dans \mathbb{N} , donc S est à valeurs dans \mathbb{N} .

De plus, pour $k \in \mathbb{N}$, $(S = k) = \bigcup_{j=0}^{\infty} ((X = j) \cap (Y = k - j))$ union disjointe.

Donc $\mathbb{P}(S=k) = \sum_{i=1}^{k} \mathbb{P}((X=j) \cap (Y=k-j))$. Or X et Y sont indépendantes, donc :

$$\mathbb{P}(S=k) = \sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j) = \sum_{j=0}^{k} pq^{j} pq^{k-j} = (k+1)p^{2}q^{k}.$$

Exercice 2

1. Soit $x \in \mathbb{R}$. On a : $\forall n \in \mathbb{N}^*$, $u_n = P_n(x) > 0$ comme produit de réels strictement positifs. Or : si $n \in \mathbb{N}^*$, $u_{n+1} = u_n \times \operatorname{ch}\left(\frac{x}{n+1}\right)$ avec $u_n > 0$ et $\operatorname{ch}\left(\frac{x}{n+1}\right) \geqslant 1$. Donc $u_{n+1} \geqslant u_n$: la suite $(P_n(x))_{n\in\mathbb{N}^*}$ est croissante

2. En reprenant les mêmes notations, on a : $\forall n \in \mathbb{N}^*, u_n \geqslant 1 > 0$. On peut donc poser $v_n = \ln{(u_n)}$ et on a : $v_n = \sum_{n=1}^{\infty} \ln\left(\operatorname{ch}\frac{x}{k}\right).$

1

Or, lorsque k tend vers l'infini, on a : $\ln\left(\operatorname{ch}\frac{x}{k}\right) = \ln\left(1 + \frac{x^2}{2k^2} + o\left(\frac{1}{k^2}\right)\right) = \frac{x^2}{2k^2} + o\left(\frac{1}{k^2}\right)$ somme de deux termes généraux de séries absolument convergentes. Ainsi la série $\sum \ln \left(\operatorname{ch} \frac{x}{k} \right)$ converge et donc la suite $(v_n)_{n \in \mathbb{N}^*}$ converge i.e. la suite $(\ln(P_n(x)))_{n\in\mathbb{N}^*}$ converge. Soit S(x) sa limite. Par continuité de la fonction exponentielle, comme $\forall n \in \mathbb{N}^*, u_n = \exp(v_n)$, la suite $(u_n)_{n \in \mathbb{N}^*}$ converge vers $\exp(S(x))$ i.e. $\forall x \in \mathbb{R}, (P_n(x))_{n \in \mathbb{N}^*}$ converge En notant $\varphi(x)$ sa limite, on a φ définie sur $J = \mathbb{R}$ et de plus, φ strictement positive sur \mathbb{R} .

3. .

3.1. Comme pour tout $n \in \mathbb{N}^*$, la fonction P_n est paire, par conservation de la parité par passage à la limite simple, φ est paire

Pour tout $n \in \mathbb{N}^*$, la fonction P_n est croissante sur \mathbb{R}^+ (car produit de fonctions positives et croissantes), par conservation de la monotonie par passage à la limite simple, $|\varphi|$ est croissante sur \mathbb{R}^+

Par parité, on a alors φ est décroissante sur \mathbb{R}^-

3.2. Par parité, pour montrer la continuité de φ sur \mathbb{R} , il suffit de montrer la continuité de φ sur tout segment de la forme [0, a] avec a > 0.

Soit a>0. On considère la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ définies sur [0,a] par : $h_n(x)=\ln\left(\operatorname{ch}\frac{x}{n}\right)$. On a $||h_n||_{\infty}^{[0,a]} = \ln\left(\operatorname{ch}\frac{a}{n}\right)$ où la notation $||f||_{\infty}^{[0,a]}$ désigne la borne supérieure de |f(x)| lorsque x décrit [0,a] et qui existe pour h_n par continuité de h_n sur le segment [0,a].

Or la série $\sum \ln\left(\operatorname{ch}\frac{a}{n}\right)$ est convergente (et de somme S(a) avec les notations de la question 2)).

Ainsi la série de fonction $\sum h_n$ converge normalement sur le segment [0,a] donc elle converge uniformément sur [0,a]. Comme pour tout n, h_n est continue sur [0,a], on en déduit que la somme uniforme S est aussi continue sur [0,a]. Enfin, par composition, comme $\varphi = \exp oS$, φ est continue sur [0,a]. Ceci étant vrai pour tout a > 0 et φ est paire, donc $|\varphi|$ est continue sur \mathbb{R}

4. .

4.1. Soit f la fonction $f = \frac{1}{ch}$. f est bien définie et continue sur \mathbb{R} comme inverse d'une fonction continue et strictement positive sur \mathbb{R} . De plus, f est positive et paire. Pour montrer l'intégrabilité de f sur \mathbb{R} , il suffit donc de la majorer sur \mathbb{R}^+ par une fonction intégrable sur \mathbb{R}^+ . Or, $\forall x \in \mathbb{R}^+, 0 < f(x) \leq 2e^{-x}$ car $\forall x \in \mathbb{R}^+, \operatorname{ch}(x) \geqslant \frac{1}{2}e^x$, et la fonction $x \to 2e^{-x}$ est intégrable sur \mathbb{R}^+ . Ainsi f intégrable sur \mathbb{R}^+ , et par parité sur \mathbb{R} tout entier. Ainsi $\left| \frac{1}{\operatorname{ch}} \right|$ est intégrable sur \mathbb{R} .

f est continue sur \mathbb{R} et la fonction $\theta: u \in \mathbb{R}_+^* \mapsto \ln(u) \in \mathbb{R}$ est une bijection strictement croissante de classe \mathscr{C}^1 de \mathbb{R}_+^* vers \mathbb{R} . Donc $\int_{\mathbb{R}} f$ et $\int_{\mathbb{R}_+^*} \theta' \times f o \theta$ sont de même nature et égales en cas de convergence. Or on

vient d'établir que $\int_{\mathbb{R}} f$ est une intégrale convergente, et on a donc l'autre aussi et : $\int_{\mathbb{R}} f = \int_0^{+\infty} \frac{2}{u^2 + 1} du$.

Ainsi
$$\left[\int_{\mathbb{R}} \frac{1}{\operatorname{ch}} = \pi \right]$$

4.2. Soit $x \in \mathbb{R}$. On a $(P_n(x))_{n \in \mathbb{N}^*}$ croissante et $\forall n \in \mathbb{N}^*, P_n(x) \geqslant P_1(x) = \operatorname{ch}(x) > 0$. Ainsi, $\forall x \in \mathbb{R}, 0 < \frac{1}{\varphi(x)} \leqslant \frac{1}{\operatorname{ch} x}$. Or on vient de voir que $\frac{1}{\operatorname{ch}}$ est intégrable sur \mathbb{R} , donc, comme $\frac{1}{\varphi}$ est continue positive, $\frac{1}{\varphi}$ est intégrable sur \mathbb{R}

Exercice 3

Questions de cours

- 1. Avec $a \neq 0$. Si s_1 et s_2 sont les racines de $aX^2 + bX + c$, on a : $aX^2 + bx + c = a(X s_1)(X s_2)$ donc $\sigma_1 = s_1 + s_2 = -\frac{b}{a}$ et $\sigma_2 = s_1 s_2 = \frac{c}{a}$
- **2.** On note \mathcal{C} l'équation caractéristique
 - Si r_1 et r_2 sont deux solutions réelles distinctes de \mathcal{C} . Alors $\exists (A,B) \in \mathbb{R}^2 | \forall n \in \mathbb{N}, u_n = Ar_1^n + Br_2^n$
 - Si r est solutions double de C. Alors $\exists (A,B) \in \mathbb{R}^2 | \forall n \in \mathbb{N}, u_n = (An+B)r^n$
 - Si \mathcal{C} possède deux racines r_1 et r_2 non réelles conjuguées. On note ces racines $re^{i\theta}$ et $re^{-i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in]0, \pi[$. Alors $\exists (A, B) \in \mathbb{R}^2 | \forall n \in \mathbb{N}, u_n = (A\cos(n\theta) + B\sin(n\theta))r^n$

- 1. La suite $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{Z}}$ est une suite de réels indexée par \mathbb{Z} telle que les sous-suites $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{N}}$ et $\left(\frac{1}{\operatorname{ch}(-n)}\right)_{n\in\mathbb{N}}$ convergent. Par ailleurs ce n'est pas une suite constante. On a bien trouvé une suite non constante élément de \mathscr{C}
- **2.** \mathscr{C} est une partie non vide de E (contient la suite précédente).
 - Soit $(x, x') \in \mathcal{C}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On pose $y = \alpha x + \beta x'$ et on note x_n, x'_n, y_n les termes généraux des suites x, x', y'.

On a: $\forall n \in \mathbb{Z}, y_n = \alpha x_n + \beta x'_n \text{ donc } \forall n \in \mathbb{N}, y_n = \alpha x_n + \beta x'_n \text{ et } \forall n \in \mathbb{N}, y_{-n} = \alpha x_{-n} + \beta x'_{-n}.$

Comme les suites $(x_n)_{n\in\mathbb{N}}$ et $(x'_n)_{n\in\mathbb{N}}$ convergent, il en est de même pour $(y_n)_{n\in\mathbb{N}}$.

Comme les suites $(x_{-n})_{n\in\mathbb{N}}$ et $(x'_{-n})_{n\in\mathbb{N}}$ convergent, il en est de même pour $(y_{-n})_{n\in\mathbb{N}}$.

Ainsi $y \in \mathscr{C}$. Et donc \mathscr{C} est stable par combinaison linéaire.

Donc par caractérisation des sous-espaces vectoriels, $\mathscr C$ est un sous-espace de E

3. Soit $x = (x_n)_{n \in \mathbb{Z}} \in \mathscr{C}$.

La suite $(x_n)_{n\in\mathbb{N}}$ converge donc est bornée : il existe A>0 tel que $\forall n\in\mathbb{N}, |x_n|\leqslant A$.

De même, la suite $(x_{-n})_{n\in\mathbb{N}}$ converge donc est bornée : il existe B>0 tel que $\forall n\in\mathbb{N}, |x_{-n}|\leqslant B$.

On pose alors $C = \max(A, B)$, et on a : $\forall n \in \mathbb{Z}, |x_n| \leq C$: la suite x est bornée.

Ainsi toute suite dans & est bornée

- **4.** Soit $x = (x_n)_{n \in \mathbb{Z}} \in \mathscr{C}$. Soit $y = T(x) = (y_n)_{n \in \mathbb{Z}}$. On a : $\forall n \in \mathbb{Z}, y_n = x_{n-1} + x_{n+1}$. Ainsi :
 - $\forall n \in \mathbb{N}^*, y_n = x_{n-1} + x_{n+1}$ donc la suite $(y_n)_{n \in \mathbb{N}^*}$ est la somme des suites $(x_{n-1})_{n \in \mathbb{N}^*}$ et $(x_{n+1})_{n \in \mathbb{N}^*}$ qui sont extraites de $(x_n)_{n \in \mathbb{N}}$ donc qui convergent. Ainsi $(y_n)_{n \in \mathbb{N}^*}$ et donc, comme la convergence d'une suite ne dépend pas des premiers termes, $(y_n)_{n \in \mathbb{N}}$ converge.
 - De même $(y_{-n})_{n\in\mathbb{N}}$ converge

Ainsi $y \in \mathscr{C}$.

On en déduit que T est une application de $\mathscr C$ vers $\mathscr C$.

Montrons la linéarité. Soit $(x, x') \in \mathscr{C}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On pose $y = T(x), y' = T(x'), z = \alpha x + \beta x'$, et w = T(z) et $v = \alpha y + \beta y'$. On doit établir : $T(\alpha x + \beta x') = \alpha T(x) + \beta T(x')$ i.e. v = w. On note $x_n, x'_n, y_n, y'_n, z_n, w_n, v_n$ les termes généraux des suites x, x', y, y', z, w, v. On a, pour tout $n \in \mathbb{Z}$:

 $v_n = \alpha y_n + \beta y'_n = \alpha (x_{n-1} + x_{n+1}) + \beta (x'_{n-1} + x'_{n+1}) = (\alpha x_{n-1} + \beta x'_{n-1}) + (\alpha x_{n+1} + \beta x'_{n+1})$. Or dans ces derniers terms on reconnaît $z_{n-1} + z_{n+1} = w_n$. Donc v = w.

Ainsi T est bien une application linéaire de $\mathscr C$ vers $\mathscr C$ i.e. T est un endomorphisme de $\mathscr C$

5. • Méthode 1. On a clairement $S \circ S = \mathrm{id}_E = \mathrm{id}_{\mathscr{C}}$. Donc comme l'énoncé nous dit que S est un endomorphisme de \mathscr{C} , on en déduit que S est une symétrie de \mathscr{C} et donc son axe, $\ker(S - \mathrm{id}_{\mathscr{C}})$, et sa direction, $\ker(S + \mathrm{id}_{\mathscr{C}})$, sont supplémentaires dans \mathscr{C} .

3

Or on a tout aussi clairement $F = \{x \in \mathcal{C}; \forall n \in \mathbb{Z}, x_n = x_{-n}\} = \{x \in \mathcal{C}; S(x) = x\} = \ker(S - \mathrm{id}_{\mathcal{C}})$ et $G = \ker(S + \mathrm{id}_{\mathcal{C}}), \operatorname{donc} F \operatorname{et} G$ sont deux sous-espaces supplémentaires dans \mathcal{C}

• <u>Méthode 2</u>. On a $F = \ker(S - \mathrm{id}_{\mathscr{C}})$ et $G = \ker(S + \mathrm{id}_{\mathscr{C}})$ donc <u>ce sont des sous-espaces de \mathscr{C} </u>, propres pour l'endomorphisme S, associés à des valeurs propres différentes : 1 et -1. Donc F et G sont en somme directe

i.e. $F + G = F \oplus G$.

De plus, si $x \in \mathscr{C}$, $x' = \frac{1}{2}(x + S(x))$ et $x'' = \frac{1}{2}(x - S(x))$, on montre aisément x = x' + x'', $x' \in F$ et $x'' \in G$, donc tout élément de S s'écrit comme somme d'un élément de F et d'un élément de G. Donc comme ce sont des sous-espaces de \mathscr{C} , on a $\mathscr{C} = F + G$.

Ainsi par caractérisation des sous-espaces supplémentaires, F et G sont supplémentaires dans \mathscr{C}

- **6.** En reprenant ce qui a été fait dans la méthode 1 dans la question précédente, on a : S symétrie d'axe F et de direction G
- **7.** .
 - 7.1. Si $\lambda \in \mathbb{R} \setminus \{2, -2\}$. Soit $x \in \ker(T \lambda \mathrm{id}_{\mathscr{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n-1} + x_{n+1} = \lambda x_n$. En particulier : $\forall n \in \mathbb{N}, x_{n+2} \lambda x_{n+1} + x_n = 0$ et, en posant $(x'_n)_{n \in \mathbb{N}} = (x_{-n})_{n \in \mathbb{N}}$, $\forall n \in \mathbb{N}, x'_{n+2} \lambda x'_{n+1} + x'_n = 0$. On considère donc l'équation caractéristique \mathscr{C} de ces suites récurrentes linéaires doubles : $X^2 \lambda X + 1 = 0$ dont le discriminant est $\Delta = \lambda^2 4$ donc est non nul car λ est différent de 2 et de -2
 - Si $\Delta > 0$. Alors les racines de \mathcal{C} sont réelles, distinctes et de produit 1. Donc l'une d'entre elles est de module strictement supérieur à 1 et l'autre est son inverse. On note r la racine de module strictement supérieur à 1.

D'après l'expression des suites récurrentes linéaires doubles, On a l'existence de 4 réels A, B, C, D tels que : $\forall n \in \mathbb{N}, x_n = Ar^n + \frac{B}{r^n}$ et $x_n' = Cr^n + \frac{D}{r^n}$. Or les suites $(x_n)_{n \in \mathbb{N}}$ et $(x_n')_{n \in \mathbb{N}}$ convergent donc A = 0 = C. De plus $x_0 = x_0'$ donc B = D. Enfin $x_1' + x_1 = \lambda x_0$ donc $(\lambda - 2r)B = 0$. Or les racines de C sont $\frac{\lambda \pm \sqrt{\Delta}}{2}$ donc $|\lambda - 2r| = \sqrt{\Delta} \neq 0$. Ainsi B = D = 0 et donc x est la suite nulle. Donc $\ker(T - \lambda \mathrm{id}_{\mathscr{C}}) \subset \{0_{\mathscr{C}}\}$

S'agissant d'un sous-espace, on en déduit que $\ker (T - \lambda id_{\mathscr{C}}) = \{0_{\mathscr{C}}\}\$

• Si $\Delta < 0$. Alors les racines de \mathcal{C} sont complexes non réelles et conjugués distinctes et de produit 1. Donc elles sont de module 1 et on peut les écrire sous la forme $e^{i\theta}$ et $e^{-i\theta}$ avec $\theta \in]0, 2\pi[$. D'après l'expression des suites récurrentes linéaires doubles réelles, On a l'existence de 4 réels A, B, α, β tels que : $\forall n \in \mathbb{N}, x_n = A\left(\cos(n\theta + \alpha)\right)$ et $x'_n = B\left(\cos(n\theta + \beta)\right)$. Or les suites $(x_n)_{n \in \mathbb{N}}$ et $(x'_n)_{n \in \mathbb{N}}$ convergent alors que les suites $(\cos(n\theta + \alpha))_{n \in \mathbb{N}}$ et $(\cos(n\theta + \beta))_{n \in \mathbb{N}}$ divergent 1 car θ n'est pas un multiple de 2π donc A = 0 = B. Donc x est la suite nulle. Donc $\ker(T - \lambda \mathrm{id}_{\mathscr{C}}) \subset \{0_{\mathscr{C}}\}$ S'agissant d'un sous-espace, on en déduit que $\ker(T - \lambda \mathrm{id}_{\mathscr{C}}) = \{0_{\mathscr{C}}\}$

Ainsi si $\lambda \in \mathbb{R} \setminus \{2, -2\}, |\ker(T - \lambda id_{\mathscr{C}}) = \{0_{\mathscr{C}}\}|$

- **7.2.** On applique le résultat précédent avec $\lambda = 0$. On a $\ker(T) = \{0_{\mathscr{C}}\}$, donc par caractérisation de l'injectivité des applications linéaires, T est injectif
- **7.3.** Si $\lambda = 2$. Soit $x \in \ker(T 2\mathrm{id}_{\mathscr{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n+2} 2x_{n+1} + x_n = 0$. Donc en généralisant le résultat du cours, comme l'équation caractéristique possède une solution double : 1, il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{Z}, x_n = A + Bn$. Comme $(x_n)_{n \in \mathbb{N}}$ converge, on a B = 0 et donc x est une suite constante. Réciproquement, les suites constantes sont clairement dans $\ker(T 2\mathrm{id}_{\mathscr{C}})$.

Ainsi $\ker (T-2\mathrm{id}_\mathscr{C})$ est l'ensemble des suites constantes

• Si $\lambda = -2$. Soit $x \in \ker(T + 2id_{\mathscr{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n+2} + 2x_{n+1} + x_n = 0$. Donc en généralisant le résultat du cours, comme l'équation caractéristique possède une solution double : -1, il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{Z}, x_n = (A + Bn)(-1)^n$. Comme $(x_n)_{n \in \mathbb{N}}$ est bornée, on a B = 0 et, comme $(x_n)_{n \in \mathbb{N}}$ converge, on a A = 0 donc x est la suite nulle.

Ainsi $\ker (T + 2id_{\mathscr{C}}) = \{0_{\mathscr{C}}\}$

7.4. Avec les 3 questions précédentes, on a établi que \boxed{T} ne possède qu'une valeur propre : 2

8. .

- **8.1.** Soit $x \in \mathscr{C}$. D'après la question 2, on sait que x est bornée, donc il existe A > 0 tel que $\forall n \in \mathbb{Z}, |x_n| \leqslant A$. Ainsi, si on pose $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$, on a : $\forall n \in \mathbb{N}, 0 \leqslant u_n \leqslant \frac{2A}{2^n}$ qui est le terme général d'une série convergente. Ainsi $\sum u_n$ converge i.e. N(x) est bien définie.
- **8.2.** N est bien une application de \mathscr{C} vers \mathbb{R}^+

^{1.} Fallait-il démontrer ce résultat classique ici?

- Séparation. Soit $x \in \mathscr{C}$ telle que N(x) = 0. On note $x = (x_n)_{n \in \mathbb{Z}}$ et $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$. On a $N(x) = \sum_{n=0}^{+\infty} u_n = 0$ alors que $\sum u_n$ est une série convergente de réels positifs. Donc comme la somme est nulle, on a : $\forall n \in \mathbb{N}, u_n = 0$. En particulier, $\forall n \in \mathbb{Z}, x_n = 0$ i.e. x est la suite nulle.
- Homogénéité. Soit $x \in \mathscr{C}$ et $\lambda \in \mathbb{R}$. Soit $y = \lambda x$, $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$ et $v_n = \frac{|y_n| + |y_{-n}|}{2^n}$ en notant les termes généraux de x et de y sous la forme x_n et y_n . On a : $\forall n \in \mathbb{N}, v_n = \frac{|\lambda x_n| + |\lambda x_{-n}|}{2^n} = |\lambda| \frac{|x_n| + |x_{-n}|}{2^n} = |u_n|. \text{ Ainsi par linéarité du passage à la somme pour les séries convergentes, } \sum_{n=0}^{+\infty} v_n = |\lambda| \sum_{n=0}^{+\infty} u_n \text{ i.e. } \underline{N(\lambda x)} = |\lambda| N(x)$
- Inégalité triangulaire. Soit $(x,y) \in \mathscr{C}^2$. Soit z = x + y. On note x_n, y_n, z_n les termes généraux de ces suites. On a : $\forall n \in \mathbb{Z}, |z_n| = |x_n + y_n| \leq |x_n| + |y_n|$.

 Ainsi : $\forall n \in \mathbb{N}, \frac{|z_n| + |z_{-n}|}{2^n} \leq \frac{|x_n| + |x_{-n}|}{2^n} + \frac{|y_n| + |y_{-n}|}{2^n}$.

 Donc en passant à la somme, on obtient $N(x + y) \leq N(x) + N(y)$

Ainsi N est une norme sur $\mathscr C$

- 8.3. Soit $x \in \mathscr{C}$ et x' = S(x). On note $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$ et $v_n = \frac{|x'_n| + |x'_{-n}|}{2^n}$. On a pour tout $n \in \mathbb{N}$, $u_n = v_n$ donc N(x') = N(x).

 Ainsi S conserve la norme N i.e. S est une isométrie de l'espace vectoriel normé (\mathscr{C}, N) .

 En prenant k = 1, on a établi : $\forall x \in \mathscr{C}, N(S(x)) \leq kN(x)$. Ainsi par caractérisation de la continuité des applications linéaires, S est un endomorphisme continu de (\mathscr{C}, N) .
- 8.4. $id_{\mathscr{C}}$ est également une application continue de (\mathscr{C},N) vers lui-même, donc $R=S-id_{\mathscr{C}}$ est continue sur (\mathscr{C},N) . Donc $F=\ker(S-id_{\mathscr{C}})=R^{-1}\left(\{0_{\mathscr{C}}\}\right)$ est l'image réciproque d'un fermé par une application continue donc F est une partie fermé de l'espace vectoriel normé (\mathscr{C},N) .

 De même G est une partie fermé de l'espace vectoriel normé (\mathscr{C},N) car $G=(S+id_{\mathscr{C}})^{-1}\left(\{0_{\mathscr{C}}\}\right)$.
- **8.5.** On considère la suite $\left(x^{(P)}\right)_{P\in\mathbb{N}^*}$ la suite d'éléments de $\mathscr C$ définie par : $\forall n\in\mathbb{Z}, x_n^{(P)}=2^n$ si $n\in [\![1,P]\!],$ $x_n^{(P)}=0$ sinon. Les suites $x^{(P)}$ sont bien dans $\mathscr C$ et on a $N\left(x^{(P)}\right)=\sum_{n=1}^P 1=P$ et $\left\|x^{(P)}\right\|_{\infty}=2^P$. Comme la suite $\left(\frac{2^P}{P}\right)_{P\in\mathbb{N}^*}=\left(\frac{\left\|x^{(P)}\right\|_{\infty}}{N\left(x^{(P)}\right)}\right)_{P\in\mathbb{N}^*}$ n'est pas majorée, on ne peut pas trouver de constante K>0 telle que $\forall x\in\mathscr C\setminus\{0_\mathscr E\}, \|x\|_{\infty}\leqslant KN(x)$.

 Ainsi les deux normes N et $\|\cdot\|_{\infty}$ ne sont pas équivalentes

Exercice 4

- 1. La bilinéarité, la symétrie et la positivité ne posent pas de problème. Pour la non dégénérescence : Soit $P \in E$ tel que $\langle P|P \rangle = 0$. On a $\int_0^1 P^2(t) \, dt = 0$. P^2 est une fonction continue positive sur [0,1] dont l'intégrale sur cet intervalle est nulle, ainsi P^2 est la fonction nulle sur [0,1]. Ainsi P s'annule une infinité de fois sur [0,1], donc, comme il s'agit d'un polynôme, $P=0_E$. Ainsi $\langle \cdot | \cdot \rangle$ est bien un produit scalaire sur $E=\mathbb{R}_n[X]$.
- **2.** Si F est un sev de E de dimension p, F^{\perp} est un sous espace de E supplémentaire à F. Donc $\dim \left(F^{\perp}\right) + \dim(F) = \dim(E)$ i.e. $\dim \left(F^{\perp}\right) = n + 1 p$
- **3.** Si n=2. Comme $\mathbb{R}_1[X]$ est de dimension p=2, $\mathbb{R}_1[X]^{\perp}$ est de dimension 1. On cherche donc les polynômes $Q=aX^2+bX+c$ orthogonaux à tous les polynômes de $\mathbb{R}_1[X]$. Il faut et il suffit que de tels polynômes soient

orthogonaux à 1 et à X. Ainsi :

$$Q = aX^2 + bX + c \in \mathbb{R}_1[X]^\perp \iff \begin{cases} \langle aX^2 + bX + c | 1 \rangle = 0 \\ \langle aX^2 + bX + c | X \rangle = 0 \end{cases} \iff \begin{cases} \frac{a}{3} + \frac{b}{2} + c = 0 \\ \frac{a}{4} + \frac{b}{3} + \frac{c}{2} = 0 \end{cases} \iff \begin{cases} a = 6c \\ b = -6c \end{cases}$$

Ainsi, comme $\mathbb{R}_1[X]^{\perp}$ est de dimension $1, (6X^2 - 6X + 1)$ constitue une base de $\mathbb{R}_1[X]$

4. .

4.1. $L \in \mathbb{R}_{n-1}[X]^{\perp} \setminus \{O_{\mathbb{R}_n[X]}\}$ donc $\deg(L) \leqslant n$.

Par l'absurde, si $\deg(L) < n$. Alors $L \in \mathbb{R}_{n-1}[X]$ et $L \in \mathbb{R}_{n-1}[X]^{\perp}$ donc, comme ces sous-espaces sont supplémentaires, L est nul ce qui est impossible car on a pris L non nul. Ainsi |L| est de degré n

4.2.

4.2.1. On écrit $L = \sum_{k=0}^{n} a_k X^k$ et on a $a_n \neq 0$. Soit $x \in \mathbb{R}$. La fonction $t \to L(t)t^x$ est donc la fonction $t \to \sum_{k=0}^{n} a_k t^{k+x}$ qui est continue sur]0,1] et intégrable si x > -1.

De plus
$$\varphi(x) = \int_0^1 L(t)t^x dt = \sum_{k=0}^n \int_0^1 a_k t^{k+x} = \sum_{k=0}^n \frac{a_k}{k+x+1}$$
.

Ainsi φ est une fonction rationnelle . On identifiera dans la suite la fonction rationnelle et la fraction ration \overline{nelle}

4.2.2. Les pôles de φ sont parmi les -(k+1) pour $k \in [0, n]$, et ils sont au plus d'ordre 1 car $\left(\prod_{k=0}^{n} (X+k+1)\right) \varphi$ est polynomiale.

L'étant orthogonal à $\mathbb{R}_{n-1}[X]$, les éléments de [0, n-1] sont au moins des zéros de φ d'ordre au moins

En écrivant φ sous forme irréductible $\varphi = \frac{P}{Q}$ alors on a $\deg(P) \geqslant n$ et $\deg(Q) \leqslant n+1$. Donc φ est de degré supérieur ou égal à -1 avec égalité si et seulement si P est de degré n et Q de degré n+1 Or φ est la somme de fractions de la forme $\frac{a_k}{X+k+1}$ qui sont de degré -1 ou $-\infty$, correspondent à des poles différents et dans laquelle au moins un des termes est non nul $\frac{a_n}{X+n+1}$, donc la somme est de degré -1. Ainsi P est degré n et Q de degré n+1et donc les poles de φ sont les -(k+1) pour $k \in [0,n]$ et ils sont d'ordre 1 et

les zéros de φ sont les k pour $k \in [0, n-1]$ et ils sont d'ordre 1

4.2.3. Plus précisément, on écrit P sous la forme $P = \lambda \prod_{k=0}^{n-1} (X-k)$ et $Q = \beta \prod_{k=0}^{n} (X+k+1)$ avec λ et λ non nuls. Ainsi il existe $\alpha \neq 0$ tel que $Q = \alpha \prod_{k=0}^{n-1} (X-k)$ nuls. Ainsi il existe $\alpha \neq 0$ tel que $Q = \alpha \prod_{k=0}^{n-1} (X-k)$ nuls. Ainsi il existe $\alpha \neq 0$ tel que $Q = \alpha \prod_{k=0}^{n-1} (X-k)$ nuls. Ainsi il existe $\alpha \neq 0$ tel que $Q = \alpha \prod_{k=0}^{n-1} (X-k)$ non a : $\frac{\prod_{k=0}^{n-1} (X-k)}{\prod_{k=0}^{n} (X+k+1)}$ on a : $\frac{\prod_{k=0}^{n-1} (X-k)}{\prod_{k=0}^{n} (X+k+1)}$ and $\frac{\prod_{k=0}^{n-1} (X-k)}{\prod_{k=0}^{n} (X+k+1)}$

avec $b_k = \frac{\displaystyle\prod_{j=0}^{n-1}(-k-1-j)}{\displaystyle\prod_{j=0}^{k-1}(-k+j)\prod_{j=k+1}^{n}(-k+j)}$ en convenant que le produit sur une partie vide vaut 1. Ainsi $b_k = (-1)^{n-k}\frac{(n+k)!}{k!\,k!\,(n-k)!}$.

$$\prod_{j=0}^{k-1} (-k+j) \prod_{j=k+1}^{n} (-k+j)$$

Donc par unicité de la décomposition en éléments simples de φ , on a :

$$\forall k \in [0, n], a_k = \alpha b_k = \alpha (-1)^{n-k} \frac{(n+k)!}{k! \, k! \, (n-k)!}.$$

 $\forall k \in \llbracket 0, n \rrbracket, a_k = \alpha b_k = \alpha (-1)^{n-k} \frac{(n+k)!}{k! \, k! \, (n-k)!}.$ Donc le polynome L vaut : $L = \alpha \sum_{k=0}^{n} \frac{(-1)^{n-k} (n+k)!}{k! \, k! \, (n-k)!} X^k$. Ainsi, comme on sait que $\mathbb{R}_{n-1}[X]^{\perp}$ est de

dimension 1, on a :
$$\mathbb{R}_{n-1}[X]^{\perp} = \text{Vect}\left(\sum_{k=0}^{n} \frac{(-1)^{n-k}(n+k)!}{(k!)^2 (n-k)!} X^k\right)$$

Exercice 5

- **1.** Par définition de l'intégrale d'une fonction en escalier, on a $\int_0^1 f_n(t) dt = \sum_{k=1}^n \frac{1}{n} w_k = \frac{1}{n} \sum_{k=1}^n w_k$
- **2.** Soit $n \in \mathbb{N}^*$. Pour $t \in [0, 1[$, on pose $k = \lfloor nt \rfloor$ la partie entière de nt. On a $k \leq nt < k+1$ donc $t \in \lfloor \frac{k}{n}, \frac{k+1}{n} \rfloor$ et donc $fn(t) = w_{k+1}$. Ceci étant vrai pour tout t, on a donc : $\forall t \in [0,1[,f_n(t)=w_{\lfloor nt \rfloor+1}])$
- **3.** Soit $t \in [0, 1]$.
 - Si t=1. Alors $\forall n \in \mathbb{N}^*, f_n(t)=w_n$ qui tend vers ℓ lorsque n tend vers l'infini.
 - Si $t \in]0,1[$. Alors $\forall n \in \mathbb{N}^*, f_n(t) = w_{\lfloor nt \rfloor+1}$ donc par composition des limites, $f_n(t)$ tend vers ℓ lorsque n $\overline{\text{tend vers}} + \infty$
 - Si t=0. Alors $\forall n \in \mathbb{N}^*$, $f_n(t)=w_1$.

Ainsi la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers la fonction $\delta: t \mapsto \begin{cases} \ell & \text{si } t \in]0,1] \\ 0 & \text{si } t=0 \end{cases}$

- Toutes les fonctions f_n sont continues par morceaux sur [0,1]. 4.
 - La suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers la fonction $\delta: t \mapsto \begin{cases} \ell & \text{si } t \in]0,1] \\ 0 & \text{si } t=0 \end{cases}$ qui est une fonction continue par morceaux sur [0,1]
 - On pose φ la fonction constante sur [0,1] égale à $\sup_{n \in \mathbb{N}} w_n$, qui existe car la suite $(w_n)_{n \in \mathbb{N}^*}$ est convergente donc bornée. Cette fonction φ est continue par morceaux et donc intégrable sur le segment [0,1] et de plus : $\forall n \in \mathbb{N}^*, \forall t \in [0,1], |f_n(t)| \leq \varphi(t)$

Ainsi, on a bien vérifiée ici les hypothèses du théorème de convergence dominée et on a : $\left(\int_{[0,1]} f_n\right)$ converge

et sa limite vaut $\int_{[0,1]} \delta$. On en déduit le résultat : $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n w_k = \ell$, résultat connu sous le nom de lemme de Cesaro