Réduction d'endomorphismes.

Exercices 2017-2018

Niveau 1.

Valeurs propres, vecteurs propres, spectre.

1. A l'aide de son polynôme caractéristique, déterminer les valeurs propres et les vecteurs propres de

l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est : $A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ -2 & 0 & -1 \end{pmatrix}$.

- 2. Soit u l'endomorphisme de $\mathbb{R}[X]$ défini par : $\forall P \in \mathbb{R}[X], u(P) = X.P (1-X)^2.P'$.
 - a. Montrer qu'un éventuel vecteur propre est de degré 1.
 - b. Montrer que : $\forall P \in \mathbb{R}_1[X], u(P) \in \mathbb{R}_1[X]$, et en notant u_1 l'endomorphisme de $\mathbb{R}_1[X]$ induit par u, donner la matrice de u_1 dans la base canonique de $\mathbb{R}_1[X]$.
 - c. En déduire les valeurs et les vecteurs propres de u_1 puis ceux de u.
- 3. Soit : $E = \mathbb{R}_n[X]$, et u et v les endomorphismes de E définis par :

$$\forall P \in E, u(P) = P - (X - 1).P', \text{ et } : v(P) = (X^2 - 1).P'' + 2.X.P'.$$

- a. Justifier que u et v sont bien des endomorphismes de E.
- b. A l'aide de la matrice de u et de v dans la base canonique de E, trouver les valeurs propres de ces endomorphismes (on ne cherchera pas les vecteurs propres).
- c. Quelle est la dimension des espaces propres de u et de v ?
- d. Ces endomorphismes sont-ils diagonalisables?
- 4. Soit u un endomorphisme d'un **K**-espace vectoriel E de dimension finie.
 - a. Montrer que : $(\exists k \in \mathbb{N}^*, 0 \in Sp(u^k)) \Rightarrow (0 \in Sp(u))$.
 - b. Montrer que : $(0 \notin Sp(u)) \Leftrightarrow (u \text{ surjectif}).$
- 5. Soient A et B des matrices respectivement dans $\mathcal{M}_{n,p}(\mathbf{K})$ et $\mathcal{M}_{p,n}(\mathbf{K})$.

Pour x réel, on définit les matrices par blocs : $M = \begin{pmatrix} x.I_n & A \\ B & I_p \end{pmatrix}$, $T_1 = \begin{pmatrix} -I_n & 0_{n,p} \\ B & I_p \end{pmatrix}$, $T_2 = \begin{pmatrix} -I_n & 0_{n,p} \\ B & -x.I_p \end{pmatrix}$

- a. En étudiant les produits $M.T_1$ et $T_2.M$, montrer que : $x^p.\chi_{AB}(x) = x^n.\chi_{BA}(x)$.
- b. En déduire, si A et B sont des matrices carrées de $\mathscr{M}_{\rm n}(\mathbf{K})$, que : $\chi_{A.B}=\chi_{B.A}$.
- 6. Soit u un automorphisme d'un K-espace vectoriel E de dimension finie.
 - a. Etablir un lien, pour x non nul, entre $\chi_{u^{-1}}(x)$ et $\chi_u\left(\frac{1}{x}\right)$.
 - b. Comparer de même $\mathit{Sp}(u)$ et $\mathit{Sp}(u^{-1})$.

Diagonalisation, trigonalisation.

- 7. Etudier la diagonalisabilité de la matrice : $A_1 = \begin{pmatrix} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{pmatrix}$.
- 8. Soient: $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, et: $\forall (a,b,c) \in \mathbb{R}^3$, $M(a,b,c) = \begin{pmatrix} a & b & c \\ b & a+c & b \\ c & b & a \end{pmatrix}$.
 - a. Déterminer les valeurs propres de A.

Montrer qu'il existe : $P \in Gl_3(\mathbb{R})$, et : $D \in Diag_3(\mathbb{R})$, telles que : $A = P.D.P^{-1}$.

b. Calculer A^2 .

En déduire que K est diagonalisable au moyen de la même matrice P, puis préciser : $\Delta = P^{-1}K.P$.

c. Sans calculs, montrer que : $\forall (a,b,c) \in \mathbb{R}^3$, M(a,b,c) ,est diagonalisable.

Préciser ses valeurs propres ainsi que son déterminant.

9. Pour quelles valeurs de : $m \in \mathbb{R}$, la matrice : $A_m = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 1 \\ m-2 & 2-m & m \end{pmatrix}$ est-elle diagonalisable ?

10. Soit :
$$A = \begin{pmatrix} \alpha & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R}), \text{ avec } : \alpha \in \mathbb{R}, \text{ et } : n \geq 3.$$

- a. Montrer que A a exactement 3 valeurs propres distinctes.
- b. A est-elle diagonalisable?
- 11. Soient : $E = \mathbb{R}_n[X]$, et u l'application définie sur E par : $\forall P \in E$, u(P) = X.(X-1).P'-n.X.P.
 - a. Vérifier que : $u \in \mathcal{L}(E)$.
 - b. Soient : $\lambda \in \mathbb{R}$, et : $P \in \mathbb{E}$.

Montrer que : $u(P) = \lambda . P$, si et seulement si P est solution sur \mathbb{R} de l'équation différentielle :

$$(E_{\lambda})$$
 $x.(x-1).y'-(n.x+\lambda).y=0$.

- c. Justifier qu'une fonction polynôme est solution de (E_{λ}) sur \mathbb{R} si et seulement si elle l'est sur $]1,+\infty)$.
- d. Résoudre (E_{λ}) sur $]1,+\infty)$.
- e. Montrer que (E_{λ}) admet des solutions polynomiales non nulles de degré inférieur ou égal à n si et seulement si λ est un entier négatif compris entre -n et 0.
- f. En déduire que : $Sp(u) = \{-n,...,-1,0\}$.

L'endomorphisme u est-il diagonalisable ?

12. Soit :
$$A = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
, avec : $(a,b) \in \mathbb{R}^2$.

Déterminer une condition nécessaire et suffisante pour que A soit diagonalisable.

13. Soit :
$$\phi \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
, défini par : $\forall M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \ \phi(M) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Déterminer les valeurs propres et les vecteurs propres de ϕ .

φ est-il diagonalisable ?

14. Soient A et B deux matrices carrées $n \times n$ à coefficients complexes, telles que : A.B = B.A.

On suppose de plus que B admet n valeurs propres distinctes, et on notera u et v les endomorphismes canoniquement associés à A et à B.

- a. Montrer que tout vecteur propre de B est vecteur propre de A.
- b. Montrer à l'aide de u et de v que A et B diagonalisent par l'intermédiaire d'une même matrice P .
- c. Montrer que : $\exists (\alpha_0,...,\alpha_{n-1}) \in \mathbb{C}^n$, $A = \alpha_0 I_n + \alpha_0 B + ... + \alpha_{n-1} B_{n-1}$.
- 15. Soit *u* un endomorphisme d'un **K**-espace vectoriel E de dimension finie.

On suppose que : $\operatorname{Im}(u + id_F) \cap \operatorname{Im}(u - id_F) = \{0\}.$

A l'aide du théorème du rang, montrer que u est diagonalisable et préciser dans la mesure du possible ses valeurs propres.

16. Trigonaliser les matrices :
$$A_1 = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ -1 & 2 & -2 \end{pmatrix}$$
, et : $A_2 = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 3 \end{pmatrix}$.

On pourra utiliser dans chaque cas l'endomorphisme canoniquement associé.

Utilisation de la diagonalisabilité.

17. Calculer A^n dans les cas suivants :

- 18. Soit : $A \in \mathcal{M}_3(\mathbb{R})$, telle que : $Sp(A) = \{-2,3,5\}$. Exprimer A^n en fonction de I_3, A, A^2 , pour tout entier : $n \in \mathbb{N}$.
- 19. Soit : $A \in \mathcal{M}_3(\mathbb{C})$, telle que : $tr(A) = tr(A^2) = 0$.
 - a. En utilisant le fait que A est trigonalisable (à justifier), montrer que : $det(I_3 + A^2) = 1 + (det(A))^2$.
 - b. Que faire si on suppose que : $A \in \mathcal{M}_3(\mathbb{R})$?
- 20. Soit u un endomorphisme diagonalisable d'un **K**-espace vectoriel E de dimension finie : $n \ge 1$.
 - a. Montrer que : $ker(u) = ker(u^2)$.
 - b. Montrer que ker(u) et Im(u) sont supplémentaires.
- 21. Soient (u_n) définie par : $u_0 = 1$, $u_1 = 2$, et : $\forall n \in \mathbb{N}$, $u_{n+2} = 4.u_{n+1} 3.u_n$, et : $U_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$, pour : $n \in \mathbb{N}$.
 - a. Montrer qu'il existe une matrice carrée A, telle que : $\forall n \in \mathbb{N}, \ U_{n+1} = A.U_n$.
 - b. Diagonaliser la matrice $\,A\,,$ et en déduire la valeur de $\,u_{\scriptscriptstyle n}\,$ pour tout entier $\,n\,.$
- 22. Etudier les trois suites récurrentes liées par les relations suivantes :

$$\begin{cases} x_0 = 0 \\ y_0 = 22 \text{, et} : \forall \ n \in \mathbb{N}, \ x_{n+1} = \frac{1}{4}.(2.x_n + y_n + z_n), \ y_{n+1} = \frac{1}{3}.(x_n + y_n + z_n), \ z_{n+1} = \frac{1}{4}.(x_n + y_n + 2.z_n) \ . \\ z_0 = 22 \end{cases}$$

23. Soit (u_n) une suite réelle vérifiant : $\forall n \in \mathbb{N}, \ u_{n+3} + 4.u_{n+2} + 5.u_{n+1} + 2.u_n = 0$.

Pour tout entier n, on note X_n la matrice colonne de coefficients u_n, u_{n+1}, u_{n+2}

- a. Déterminer une matrice : $A \in \mathcal{M}_3(\mathbb{R})$, telle que : $\forall n \in \mathbb{N}, \ X_{n+1} = A.X_n$.
- b. Exprimer u_n en fonction de u_0, u_1, u_2 et : $n \in \mathbb{N}$.
- 24. Soit *A* la matrice : $A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$.
 - a. Déterminer une matrice : $P \in Gl_2(\mathbb{R})$, et une matrice diagonale réelle D telles que : $D = P^{-1}.A.P$. Soit M une matrice de $\mathcal{M}_2(\mathbb{R})$ telle que : $M^2 + M = A$ (E).
 - b. Montrer que la matrice : $N = P^{-1}.M.P$, vérifie : $N^2 + N = D$, puis que N commute avec D. En déduire que $P^{-1}.M.P$ est diagonale.
 - c. Résoudre l'équation (E).

25. Soit *A* la matrice :
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

- a. Déterminer les valeurs propres de A.
- b. Déterminer les solutions dans $\mathcal{M}_3(\mathbb{C})$ puis dans $\mathcal{M}_3(\mathbb{R})$ de l'équation : $M^2 = A$.

Polynômes de matrices, utilisation de polynômes.

26. Soit :
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
.

- a. Vérifier que si P est le polynôme caractéristique de A, on a bien : P(A) = 0.
- b. Déterminer le polynôme de plus bas degré normalisé vérifiant l'égalité précédente. Le polynôme que l'on obtient ainsi s'appelle le polynôme minimal de A.
- 27. Soit : $A \in \mathcal{M}_{n}(\mathbb{C})$, telle que : $A^{4} = 7.A^{3} 12.A^{2}$.
 - a. Déterminer les seules valeurs propres complexes possibles de A.
 - b. En déduire que : $tr(A) \in \mathbb{N}$, et : $tr(A) \le 4.n$.
- 28. Soit : $f \in \mathcal{L}(E)$, où E est un espace vectoriel de dimension 3.

On suppose que : $f^4 = f^2$, et que 1 et -1 sont valeurs propres de f.

Montrer que f est diagonalisable (on pourra distinguer deux cas).

29. Montrer qu'il n'existe pas de matrice dans $\mathcal{M}_5(\mathbb{R})$ dont un polynôme annulateur est :

$$P = X^4 + X^3 + 2.X^2 + X + 1.$$

- 30. Soit : $A \in \mathcal{OM}_3(\mathbb{R})$, telle que : $A^3 = I_3$, et : $A \neq I_3$.
 - a. Déterminer les valeurs propres réelles de A.
 - b. Déterminer les valeurs propres complexes de *A* et leurs multiplicités.
 - c. A est-elle diagonalisable?
- 31. Soit : $M \in \mathcal{OM}_n(\mathbb{R})$, telle que : $M^2 + {}^t M = 2.I_n$.
 - a. Trouver un polynôme annulateur pour M.
 - b. En déduire que M est diagonalisable.
- 32. Soit E un **K**-espace vectoriel de dimension finie et : $p \in \mathcal{L}(E)$, tel que p^2 soit un projecteur.
 - a. Quelles sont les valeurs propres possibles pour p ?
 - b. Montrer que p est diagonalisable si et seulement si : $p^3 = p$.
- 33. Soient : $n \ge 2$, et : $A = (\delta_{i,i+1}) \in \mathcal{M}_n(\mathbb{R})$, où $\delta_{a,b}$ désigne le symbole de Kronnecker.
 - a. Montrer que A est nilpotente et déterminer le plus petit entier p tel que : $A^p = 0$.

On pourra utiliser l'endomorphisme u canoniquement associé à A.

- b. Existe-t-il une matrice B telle que : $B^2 = A$?
 - On pourra être amené à distinguer les cas n pair et n impair.
- 34. Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie.

On suppose que u admet une unique valeur propre λ .

- a. Quel est le polynôme caractéristique de u?
- b. A quelle condition u est-il diagonalisable?
- c. Justifier que $u \lambda . id_F$ est nilpotent.

35. Soit u un automorphisme d'un **K**-espace vectoriel E de dimension finie.

Montrer que u^{-1} est un polynôme en u.

36. Soient E un \mathbb{C} -espace vectoriel de dimension finie et : $u \in \mathcal{L}(E)$, diagonalisable.

On pose:
$$\forall n \ge 0$$
, $g_n = \sum_{k=0}^n \frac{u^k}{k!}$.

Montrer qu'il existe : $n_0 \in \mathbb{N}$, tel que : $\forall n \ge n_0$, g_n est inversible.

On pourra utiliser le fait que :
$$\forall z \in \mathbb{C}, e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!} \neq 0$$
.

Sous-espaces vectoriels stables.

- 37. Soient *u* et *v* deux endomorphismes d'un C-espace vectoriel de dimension finie qui commutent.
 - a. Justifier que u admet au moins une valeur propre.
 - b. En déduire que u et v ont au moins un vecteur propre commun.
- 38. Soit E un **K**-espace vectoriel de dimension finie n et soit : $u \in \mathcal{L}(E)$.

On suppose qu'il existe : $x_0 \in E$, tel que : $(x_0, u(x_0), ..., u^{n-1}(x_0))$ soit une base de E.

- a. Montrer que E est le seul sous-espace vectoriel de E, stable par u qui contienne x_0 . Enoncer une réciproque.
- b. Justifier qu'il existe : $(\alpha_0,...,\alpha_{n-1}) \in \mathbf{K}^n$, tel que : $u^n(x_0) = \alpha_0.x_0 + \alpha_1.u(x_0) + ... + \alpha_{n-1}.u^{n-1}(x_0)$. Montrer que : $u^n = \alpha_0.id_E + \alpha_1.u + ... + \alpha_{n-1}.u^{n-1}$.
- 39. Soit : $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, et soit u l'endomorphisme canoniquement associé à M .

Soit F un sous-espace vectoriel de \mathbb{R}^3 stable par u et u_F l'endomorphisme induit par u dans F.

a. Justifier que u_F est diagonalisable.

Que peut-on dire des vecteurs propres de $u_{\scriptscriptstyle F}$?

- b. En déduire que F admet une base formée de vecteurs propres de u.
- c. Déterminer tous les sous-espace vectoriels de \mathbb{R}^3 stables par u.
- 40. Soit $\it u$ un endomorphisme d'un $\it K$ -espace vectoriel E de dimension finie $\it n$.
 - a. Soit λ une valeur propre de u et E_{λ} le sous-espace propre associé. Donner la matrice de u dans une base adaptée à E_{λ} et en déduire que la dimension de E_{λ} est inférieure ou égale à la multiplicité de λ .
 - b. En déduire que u est diagonalisable si et seulement si la dimension de chaque sous-espace propre est égale à la multiplicité de la valeur propre correspondante.

Niveau 2.

Valeurs propres, vecteurs propres, spectre.

41. Déterminer les valeurs et vecteurs propres de f , endomorphisme de \mathbb{R}^3 canoniquement associé à la

matrice :
$$A = \begin{pmatrix} 8 & 12 & 10 \\ -9 & -22 & -22 \\ 9 & 18 & 17 \end{pmatrix}$$
.

- 42. a. Montrer qu'une symétrie d'un **K**-espace vectoriel de dimension finie est diagonalisable.
 - b. Soit ϕ l'application de $\mathbb{R}_{2.n+1}[X]$ dans lui-même définie par : $\forall P \in \mathbb{R}_{2.n+1}[X], \ \phi(P) = X^{2.n+1}.P\left(\frac{1}{X}\right)$.

Montrer que : $\phi \in \mathscr{L}(\mathbb{R}_{2.n+1}[X])$.

Montrer que ϕ est diagonalisable et déterminer une base de vecteurs propres.

43. Matrices compagnes.

$$\text{Soit}: P = X^{n} - (a_{n-1}.X^{n-1} + ... + a_{1}.X + a_{0}) \in \mathbf{K}[X], \text{ et soit}: A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ a_{0} & a_{1} & \cdots & \cdots & a_{n-1} \end{pmatrix} \in \mathscr{M}_{\mathsf{n}}(\mathbf{K}).$$

- a. Montrer que P est le polynôme caractéristique de A .
- b. Soit : $\lambda \in Sp(A)$.

Déterminer $rg(A - \lambda I_n)$ et en déduire la dimension du sous-espace propre associé à λ .

- c. Donne une condition nécessaire et suffisante portant sur P pour que A soit diagonalisable.
- d. Montrer que si : $(a_0, a_1, ..., a_{n-1}) = (1, 2, ..., n)$, alors la matrice A obtenue a, dans l'intervalle $]0, +\infty)$, une unique valeur propre . . .
- 44. Soit : $E = C^{\infty}(\mathbb{R},\mathbb{R})$.

Pour: $f \in E$, on note: u(f) = f'.

Déterminer les éléments propres de u et montrer en particulier que tout sous-espace propre de u est de dimension 1.

45. Soit : $E = C^{\infty}(\mathbb{R},\mathbb{R})$.

Soit ϕ l'application de E dans E qui à f dans E associe g définie par : \forall x \in R, $g(x) = f'(x) - x \cdot f(x)$.

- a. Montrer que : $\varphi \in \mathcal{L}(E)$.
- b. Déterminer les valeurs propres et les sous-espaces propres de φ.
- c. Déterminer $ker(\phi^2)$.
- 46. Matrices stochastiques.

On dit qu'une matrice : $A \in \mathcal{M}_n(\mathbb{R})$, est stochastique si elle vérifie les conditions :

- $\forall \ 1 \le i, j \le n, \ a_{i,j} \in \mathbb{R}^+,$
- $\forall \ 1 \le i \le n \ , \ \sum_{j=1}^{n} a_{i,j} = 1 \ .$

Soit A une matrice stochastique.

- a. Montrer que 1 est valeur propre de A.
- b. On suppose que λ est une valeur propre complexe de A et X un vecteur propre de A associé à λ ..

On appelle i_0 un entier entre 1 et n , tel que : $\left|x_{i_0}\right| = \max_{1 \le i \le n} \left|x_i\right|$.

Justifier que i_0 existe, que : $\left|\mathbf{x}_{\mathbf{i}_0}\right| \neq 0$, puis que : $\left|\lambda\right| \leq 1$.

- 47. Soient A et B deux matrices de $\mathcal{M}_n(\mathbf{K})$, telles que : A.B B.A = A.
 - a. Calculer $A^k.B B.A^k$, pour : $k \in \mathbb{N}$.
 - b. On suppose que A n'est pas nilpotente.

Montrer alors que l'endomorphisme u de $\mathcal{L}(\mathcal{M}_n(\mathbf{K}))$ défini par : $M \mapsto M.B - B.M$, admet une infinité de valeurs propres.

- c. En déduire que *A* est nilpotente.
- 48. Soit u l'endomorphisme de $\mathbb{R}_2[X]$ défini par : u(P) = (X+1).(X-3).P'-2.X.P .
 - a. Est-ce bien un endomorphisme de $\mathbb{R}_2[X]$?

Soit λ un réel et P un polynôme.

- b. Montrer que : $u(P) = \lambda . P$, si et seulement si P est solution d'une équation différentielle linéaire du premier ordre.
- c. Résoudre cette équation différentielle et trouver une condition sur λ pour qu'elle admette des solutions polynomiales.
- d. Trouver les valeurs propres et les vecteurs propres de u.

e. Généraliser avec R_n[X].

49. Soit :
$$A = \begin{pmatrix} 0 & a_2 & \cdots & a_n \\ a_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_n \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix} \in \mathscr{M}_{\mathsf{n}}(\mathbb{C})$$
, avec a_1, \dots, a_n des complexes deux à deux distincts, non nuls.

a. Calculer $P(a_i)$, pour : $1 \le i \le n$.

b. Donner la décomposition en éléments simples de
$$\frac{P}{\prod\limits_{i=1}^{n}(X-a_i)}$$
 .

c. En déduire det(A) et $det(A + I_n)$.

Diagonalisation, trigonalisation.

50. Soit, pour n entier, l'application u de $\mathcal{M}_n(\mathbb{R})$ dans lui-même, qui à A fait correspondre sa transposée. Etudier la diagonalisabilité de u.

51. Soit :
$$A = \begin{pmatrix} 0 & -b & c \\ a & 0 & -c \\ -a & b & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

En distinguant trois cas, étudier si A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

52. Trigonaliser les matrices :
$$A = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

53. Soit :
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$
.

Montrer avec des arguments simples (sans le polynôme caractéristique) que A est diagonalisable.

54. Soit A une matrice de rang 1. Montrer que A est diagonalisable si et seulement si : $tr(A) \neq 0$.

55. Soient :
$$A = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}$$
, et : $B = \begin{pmatrix} 3 & -3 & 6 \\ 1 & -1 & 2 \\ -1 & 1 & -2 \end{pmatrix}$.

56. Soit E un \mathbb{C} -espace vectoriel de dimension finie, soit : $\mathscr{B} = (e_1, ..., e_n)$ une base de E, et soit fl'endomorphisme de E défini par : $\forall \ 1 \le i \le n$, $f(e_i) = e_i + \sum_{i=1}^{n} e_i$.

- a. Donner la matrice de f dans la base \mathscr{B} .
- b. Trouver deux valeurs propres « simples » de f et les sous-espaces propres associés. En déduire les éléments propres de f .
- c. f est-il diagonalisable?

57. Soit E un **K**-espace vectoriel de dimension finie, et soit : $f \in \mathcal{L}(E)$.

On note ϕ l'application de $\mathcal{L}(\mathsf{E})$ dans $\mathcal{L}(\mathsf{E})$ définie par : $\forall g \in \mathcal{L}(\mathsf{E}), \phi(g) = f \circ g - g \circ f$.

Si f est diagonalisable, montrer à l'aide d'une base de E formée de vecteurs propres de f que ϕ est aussi diagonalisable.

58. Pour : (a,b)
$$\in$$
 K², on note A la matrice : $A_{2.n+1} = \begin{pmatrix} a & 0 & \cdots & \cdots & 0 & b \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ \vdots & \ddots & a & 0 & b & \ddots & \vdots \\ \vdots & & 0 & a+b & 0 & & \vdots \\ \vdots & & b & 0 & a & \ddots & \vdots \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ b & 0 & \cdots & \cdots & \cdots & 0 & a \end{pmatrix} \in \mathscr{M}_{2.n+1}(\mathbf{K}).$ Etudier si A est diagonalisable ou trigonalisable.

Etudier si A est diagonalisable ou trigonalisable.

Utilisation de la diagonalisabilité.

- 59. Soit l'équation : $M^2 + M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, d'inconnue : $M \in \mathcal{M}_2(\mathbb{R})$.
 - a. Si M est solution de cette équation, justifier M est diagonalisable et déterminer ses valeurs propres.
 - b. Trouver les solutions de l'équation initiale en utilisant un polynôme annulateur.
- 60. Soient E un R-espace vectoriel de dimension finie n et : $u \in \mathcal{L}(E)$, admettant n valeurs propres distinctes. On considère l'équation d'inconnue : $g \in \mathcal{L}(E)$, $g^2 = u$.
 - a. Préciser la dimension des espaces propres de u.
 - b. Montrer que si g est solution du problème, alors u et g commutent.
 - c. En déduire que dans ce cas, les vecteurs propres de u sont vecteurs propres de g.
 - d. Déterminer le nombre de solutions de l'équation précédente.
- 61. Soit : $A \in \mathcal{M}_n(\mathbb{R})$.

Montrer que :
$$\forall x \in \mathbb{C} \setminus Sp(A)$$
, $tr((x.I_n - A)^{-1}) = \frac{\chi_A'(x)}{\chi_A(x)}$.

Polynômes de matrices, utilisation de polynômes.

62. Soit : $A \in \mathcal{M}_n(\mathbb{R})$, telle que : $A^3 = A + I_n$.

Montrer que : det(A) > 0.

- 63. On veut résoudre dans $\mathcal{M}_5(\mathbb{C})$ l'équation : $A^5 = I_5$.
 - a. Montrer qu'une solution de cette équation est nécessairement diagonalisable.
 - b. Résoudre l'équation.
- 64. Soit *A* une matrice de $\mathcal{M}_n(\mathbb{R})$, telle que : $\forall 1 \le i, j \le n$, $a_{i,j} = \alpha_i.\alpha_j$, où : $(\alpha_1,...,\alpha_n) \in \mathbb{R}^n$.

Calculer A^2 et en déduire si A est diagonalisable (on distinguera deux cas).

65. Soit E un \mathbb{R} -espace vectoriel de dimension n et p un projecteur de E.

On appelle Φ l'endomorphisme de $\mathcal{L}(\mathsf{E})$ qui à u fait correspondre pou.

- a. Déterminer les valeurs et les vecteurs propres de Φ .
- b. Est-il diagonalisable?

- 66. Soit u l'endomorphisme de K[X] qui à P associe P(2.X).
 - a. Justifier que u est un automorphisme de K[X], et déterminer ses valeurs propres.
 - b. Peut-on trouver : $Q \in \mathbf{K}[X]$, tel que : $u^{-1} = Q(u)$?
- 67. Soient λ et μ deux complexes distincts non nuls, et soient M, A, B trois matrices de $\mathcal{M}_n(\mathbb{C})$ telles que :

$$I_n = A + B,$$

$$M = \lambda . A + \mu . B$$
,

$$M^{2} = \lambda^{2}.A + \mu^{2}.B$$
.

- a. En calculant $M^2-(\lambda+\mu).M+\lambda.\mu.I_n$, montrer que M est inversible et calculer M^{-1} .
- b. Montrer que *A* et *B* sont des matrices de projecteurs.
- c. Montrer que M est diagonalisable et déterminer son spectre.
- 68. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$.
 - a. En utilisant le fait que B est trigonalisable, montrer que A et B n'ont pas de valeur propre en commun si et seulement si $\chi_A(B)$ est inversible.
 - b. On suppose qu'il existe une matrice : $M \in \mathcal{M}_n(\mathbb{C}), M \neq 0$, telle que : A.M = M.B

Montrer que : $\forall k \in \mathbb{N}, A^k.M = M.B^k$, puis que : $\forall P \in \mathbb{C}[X], P(A).M = M.P(B)$.

En déduire que A et B ont une valeur propre en commun.

c. Réciproquement, montrer que si $\it A$ et $\it B$ ont une valeur propre $\it \lambda$ en commun, alors :

 $\exists M \in \mathcal{O}_n(\mathbb{C}), M \neq 0$, telle que : A.M = M.B.

d. Si A et B sont telles que : $Sp(A) \cap Sp(B) = \emptyset$, montrer que l'endomorphisme ϕ de $\mathscr{M}_n(\mathbb{C})$ défini par : $\forall M \in \mathscr{M}_n(\mathbb{C}), \ \phi(M) = A.M - M.B$, est un automorphisme.

Sous-espaces vectoriels stables.

69. Soit p un projecteur d'un **K**-espace vectoriel E de dimension finie n.

Soit F un sous-espace vectoriel de E stable par p.

a. Soit x un vecteur de F tel que : $x = x_i + x_k$, avec : $x_i \in \text{Im}(p)$, $x_k \in \text{ker}(p)$.

Montrer que x_i et x_k appartiennent à F.

- b. En déduire que F s'écrit : $F = F_i \oplus F_k$, où : $F_i \subset Im(p)$ et : $F_k \subset \ker(p)$.
- c. En déduire tous les sous-espaces vectoriels de E stables par p.
- 70. Soient : $u \in \mathcal{L}(\mathbb{C}^n)$, tel que : $u^n = Id_{\mathbb{C}^n}$, E un sous-espace vectoriel de \mathbb{C}^n stable par u et p un projecteur de \mathbb{C}^n sur E.

On pose :
$$q = \frac{1}{n+1} \cdot \sum_{k=0}^{n} u^k \circ p \circ u^{n-k}$$
 .

- a. Montrer que : $Im(q) \subset E$, puis que : $ker(q) \oplus E = \mathbb{C}^n$.
- b. Montrer que q est le projecteur de \mathbb{C}^n sur E dans la direction $\ker(q)$.
- 71. Soit T l'endomorphisme de **K**[X] défini par : $P \mapsto P(1-X)$.
 - a. Montrer que T est un automorphisme de K[X].
 - b. Déterminer les valeurs propres de T.

Niveau 3.

Valeurs propres, vecteurs propres, spectre.

- 72. Soit E l'espace vectoriel des suites convergentes réelles, et u l'application de E dans E qui, à une suite (x_n) fait correspondre (y_n) , définie par : \forall $n \in \mathbb{N}$, $y_n = x_{n+1}$.
 - a. Vérifier que : $u \in \mathcal{L}(E)$, et déterminer le spectre de u .
 - b. Faire de même pour v, défini par : \forall $(x_n) \in E$, $v((x_n)) = (y_n)$, avec : $y_0 = 0$, et : \forall $n \in \mathbb{N}$, $y_{n+1} = x_n$.

- 73. Soit : $E = C^0([-\pi,\pi],\mathbb{R})$.
 - Pour f élément de E, on note u(f) et v(f) les applications de $[-\pi,+\pi]$ dans $\mathbb R$ définies par :

$$\forall x \in [-\pi, +\pi], \ u(f)(x) = \int_{-\pi}^{+\pi} \cos(x-t).f(t).dt$$
, et: $v(f)(x) = \int_{-\pi}^{+\pi} \sin(x-t).f(t).dt$.

- a. Transformer l'écriture de u(f) et v(f) à l'aide d'une linéarisation de sin et cos
- b. Vérifier que *u* et *v* sont bien des endomorphismes de E.
- c. Déterminer les valeurs et vecteurs propres de u et de v.
- 74. Soit : E = C⁰(\mathbb{R} , \mathbb{R}), et φ l'application définie par : $\forall f \in \mathbb{E}$, $\varphi(f) = g$, avec :

$$\forall \mathbf{x} \in \mathbb{R}^*, \ g(x) = \frac{1}{x} \cdot \int_0^x f(t) \cdot dt,$$
$$g(0) = f(0).$$

- a. Montrer que l'on définit ainsi un endomorphisme de E.
- b. Déterminer ses valeurs et vecteurs propres.
- 75. Soient A, B deux matrices de $\mathcal{M}_n(\mathbf{K})$.
 - a. Montrer à l'aide d'un vecteur propre que si λ est valeur propre non nulle de A.B, alors λ est valeur propre de B.A.
 - b. Montrer avec le déterminant que si 0 est valeur propre de A.B, alors 0 est aussi valeur propre de B.A.
 - c. En déduire que : Sp(A.B) = Sp(B.A).
- 76. Soit E le sous-espace vectoriel de $C^0(\mathbb{R}^+,\mathbb{R})$ constitué des fonctions f admettant une limite finie en $+\infty$. On note u l'endomorphisme de E défini par : $\forall f \in E, \forall x \ge 0, u(f)(x) = f(x+1)$.
 - a. Soit λ une valeur propre de u et f un vecteur propre associé. Montrer que si f ne tend pas vers 0 en $+\infty$, alors : $\lambda=1$.
 - b. Montrer que 1 est valeur propre de u et déterminer l'espace propre associé.
 - c. On suppose à nouveau que λ est valeur propre de u et f est un vecteur propre associé. Montrer que si f tend vers 0 en $+\infty$, alors : $|\lambda| < 1$.
 - d. Réciproquement, montrer que pour : $|\lambda| < 1$, il est possible de définir une fonction f sur \mathbb{R}^+ à l'aide de conditions sur [0,1] qui soit vecteur propre de u associé à λ .
- 77. Soit *u* un endomorphisme de rang 2 d'un **K**-espace vectoriel de dimension finie.
 - a. Donner la matrice de u dans une base adaptée à ker(u).
 - b. En déduire χ_u en fonction de tr(u) et de $tr(u^2)$.

Diagonalisation, trigonalisation, utilisation de la diagonalisabilité.

- 78. Soit *A* la matrice de $\mathcal{M}_4(\mathbb{C})$ définie par : $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & k & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, avec : $k \in \mathbb{C}$.
 - a. Déterminer rg(A) et en déduire une valeur propre de A.
 - b. Montrer que le polynôme caractéristique de A peut se mettre sous la forme : $\chi_A(x) = x^2 \cdot (x-a) \cdot (x-b)$.
 - c. Montrer que a et b vérifie : a+b=k , $a^2+b^2=k^2+6$.
 - d. Quelles sont les valeurs de k pour lesquelles on a : a = b ? Préciser alors les vecteurs propres associés à cette valeur propre.
 - e. Quelles sont les valeurs de k pour lesquelles la matrice est diagonalisable ?
- 79. Soit ϕ défini sur $\mathcal{M}_n(\mathbf{K})$ par : $\forall M \in \mathcal{M}_n(\mathbf{K}), \ \phi(M) = M + tr(M).I_n$. Montrer que ϕ est diagonalisable et déterminer ses éléments propres.

80. Soit *A* une matrice de $\mathcal{M}_n(\mathbb{C})$, avec : $n \ge 3$.

On suppose que : tr(A) = 0, rg(A) = 2, $A^n \neq 0$.

Montrer que A est diagonalisable.

81. Soit : (a,b,c,d)
$$\in \mathbb{R}^4$$
, et soit : $A = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$.

- a. Calculer A. tA , et en déduire le polynôme caractéristique de A.
- b. Trouver les valeurs propres de *A* et leur ordre de multiplicité.
- c. Montrer que A est diagonalisable dans $\mathcal{M}_4(\mathbb{C})$ (on pourra poser : $\omega = \sqrt{b^2 + c^2 + d^2}$).
- 82. Soient α , β , γ des scalaires deux à deux distincts, et : E = $\mathbf{K}_2[X]$.
 - a. Montrer que l'application u qui à P dans E fait correspondre le reste de la division euclidienne de $X^3.P$ par $(X-\alpha).(X-\beta).(X-\gamma)$ est un endomorphisme de E.
 - b. En utilisant une base bien choisie de E, étudier la diagonalisabilité de u.

83. Soient :
$$A \in \mathcal{M}_{\mathsf{n}}(\mathbb{C})$$
, et : $B = \begin{pmatrix} 0_n & I_n \\ A & 0_n \end{pmatrix} \in \mathcal{M}_{2,\mathsf{n}}(\mathbb{C})$.

- a. Montrer que $\forall \lambda \in \mathbb{C}$, $(\lambda \in Sp(B)) \Leftrightarrow (\lambda^2 \in Sp(A))$.
- b. Montrer que : $\forall \lambda \in Sp(B)$, $\dim(E_{\lambda}(B)) = \dim(E_{\beta^2}(A))$.
- c. Montrer que B est diagonalisable si et seulement si A est diagonalisable et inversible.
- 84. Soient A, B deux matrices de $\mathcal{M}_n(\mathbb{C})$.
 - a. Exprimer $tr(A^k)$ en fonction des valeurs propres de A, pour tout entier : $k \in \mathbb{N}$.
 - b. Montrer que : $(\forall k \in \mathbb{N}, tr(A^k) = tr(B^k)) \Leftrightarrow (Sp(A) = Sp(B), avec les mêmes multiplicités).$
- 85. Montrer que tout endomorphisme d'un **K**-espace vectoriel de dimension finie peut s'écrire comme somme de deux endomorphismes diagonalisables.
- 86. On effectue une suite de lancers indépendants d'une pièce équilibrée et l'on désigne par p_n la probabilité de ne pas avoir obtenu 3 Pile consécutifs lors des n premiers lancers.
 - a. Calculer p_1, p_2, p_3 .
 - b. Pour : $n \ge 4$, exprimer p_n en fonction de p_{n-1} , p_{n-2} et p_{n-3} .
 - c. Déterminer la limite de la suite (p_n).

Polynômes de matrices, utilisation de polynômes.

87. Soit : $A \in \mathcal{M}_3(\mathbb{R})$, telle que : $A \neq 0$, $A^3 + A = 0$.

Montrer que A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

88. Soit A une matrice de $\mathcal{M}_2(\mathbb{Z})$ telle que : $\exists p \in \mathbb{N}, A^p = I_2$.

Montrer que : $A^{12} = I_2$.

- 89. Soit : $M \in \mathcal{M}_{\mathsf{n}}(\mathbb{C})$, telle que : $M^2 + {}^t M = I_n$.
 - a. Montrer que M est inversible si et seulement si : $1 \notin Sp(M)$.

- b. Montrer que M est diagonalisable.
- 90. Soit : $A \in \mathcal{M}_n(\mathbb{C})$, telle que : $A^n = I_n$, et telle que : $(I_n, A, ..., A^{n-1})$ est libre. Montrer que : tr(A) = 0.
- 91. Soit E un **K**-espace vectoriel de dimension quelconque, et soit : $u \in \mathcal{L}(E)$. On suppose que P est un polynôme de **K**[X] tel que : P(u) = 0, P(0) = 0, $P'(0) \neq 0$. Montrer que : $E = \operatorname{Im}(u) \oplus \ker(u)$.
- 92. Soit : $A \in \mathcal{M}_{n}(\mathbb{R})$, et : $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$.
 - a. A l'aide des polynômes X^k , avec : $k \in \mathbb{N}$, montrer que : $\forall P \in \mathbb{R}[X], P(B) = \begin{pmatrix} P(A) & A.P'(A) \\ 0 & P(A) \end{pmatrix}$.
 - b. En déduire les matrices A telles que la matrice B associée soit diagonalisable.
- 93. Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel \mathbb{E} de dimension finie n.
 - a. On suppose que : $u \in GI(E)$.

Montrer que u est diagonalisable si et seulement si u^2 l'est.

- b. Généralisation : soit : $P \in \mathbb{C}[X]$, tel que : $P'(u) \in GI(E)$. Montrer que u est diagonalisable si et seulement si P(u) l'est.
- 94. a. Soit H un hyperplan de $\mathcal{M}_n(\mathbf{K})$ ne contenant aucune matrice inversible. Montrer que H contient toutes les matrices nilpotentes de $\mathcal{M}_n(\mathbf{K})$.
 - b. A l'aide des matrices de la base canonique, en déduire que tout hyperplan H de $\mathcal{M}_n(\mathbf{K})$ contient une matrice inversible, et donc est tel que : $H \cap GI_n(\mathbf{K}) \neq \emptyset$.

Sous-espaces vectoriels stables.

- 95. Soit E un \mathbb{C} -espace vectoriel de dimension finie n, et soit f un endomorphisme de E.
 - a. Montrer que si f est diagonalisable, tout sous-espace vectoriel de E stable par f admet un supplémentaire dans E stable par f.
 - b. Montrer la réciproque de l'implication précédente.
- 96. Soit E un **K**-espace vectoriel de dimension finie n, et soit : $u \in \mathcal{L}(\mathsf{E})$, diagonalisable. On note C_u l'ensemble des endomorphismes de E qui commutent avec u.
 - a. Montrer que C_u est un sous-espace vectoriel de $\mathscr{L}(\mathsf{E})$.
 - b. Montrer que : $\forall g \in \mathcal{L}(\mathsf{E})$, $(g \in C_u) \Leftrightarrow (\forall \lambda \in Sp(u), E_\lambda(u) \text{ stable par } g)$.
 - c. Pour : $\lambda \in Sp(u)$, on note m_λ la multiplicité de λ comme valeur propre de u . Déduire de la question b. que : $\dim(C_u) = \sum_{\lambda \in Sp(u)} m_\lambda^2$.
 - d. On suppose que u admet n valeurs propres distinctes. Montrer que $(id_E, u, ..., u^{n-1})$ est une base de C_u .
- 97. Théorème de Cayley-Hamilton.

Soient E un **K**-espace vectoriel de dimension finie, $u \in \mathcal{L}(\mathsf{E})$, F un sous-espace vectoriel de E stable par u, \hat{u} l'endomorphisme induit par u dans F, et χ_u et $\chi_{\hat{u}}$ les polynômes caractéristiques de u et \hat{u} .

a. Montrer que $\chi_{\hat{u}}$ divise χ_u .

Pour la suite, E est un K-espace vectoriel de dimension n, $u \in \mathcal{L}(E)$, et : $x \in E$, $x \neq 0$.

- b. Montrer l'existence de : $p \le n$, tel que :
 - $(x,u(x),...,u^{p-1}(x))$ est une famille libre de E,
 - $u^p(x) \in F_x$, où : $F_x = Vect(x, u(x), ..., u^{p-1}(x))$.

c. Montrer alors que F_x est stable par u.

On note \hat{u} l'endomorphisme induit par u dans F_{r}

- d. Calculer $\chi_{\hat{\mathbf{u}}}$ en utilisant une base 'naturelle' de F_{x}
- e. En déduire que : $\chi_{\hat{u}}(u)(x) = 0$ puis en déduire que : $\chi_{u}(u)(x) = 0$.
- f. Conclure par le théorème de Cayley-Hamilton.
- 98. Théorème : « dans un \mathbb{C} -espace vectoriel E de dimension finie, le polynôme caractéristique d'un endomorphisme u de E et son polynôme minimal ont les mêmes racines. » Soit E un \mathbb{C} -espace vectoriel de dimension finie n et : $u \in \mathcal{L}(E)$.
 - a. Montrer qu'il existe au moins un polynôme normalisé annulateur pour u.
 - b. Montrer qu'il existe un unique polynôme normalisé annulateur pour u et de plus bas degré qu'on appellera polynôme minimal de u et qu'on notera μ_u .
 - c. Montrer que si λ est valeur propre de u alors λ est racine de μ_u .
 - d. Montrer que toute racine de $\mu_{\scriptscriptstyle u}$ est valeur propre de $\it u$.
 - e. Conclure.