$PSI^* - 2016/2017$ Le 01/10/2016.

$D.S.\ 2\ {\it (4 heures)}$

Exercice

Soit $n \geq 1$ un entier. On considère la matrice carrée d'ordre n à coefficients réels A suivante :

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}.$$

Plus précisément, si l'on désigne par $a_{i,j}$ le coefficient de A situé sur la i-ième ligne et la j-ième colonne, pour $n \ge 2$, tous les $a_{i,j}$ sont nuls, sauf :

$$a_{i,i} = 2 \text{ pour } i = 1, \dots, n \text{ et } a_{i,i+1} = a_{i+1,i} = -1 \text{ pour } i = 1, \dots, n-1$$

et, pour n=1, A est la matrice à une ligne et une colonne dont le seul élément est $a_{1,1}=2$.

1) Pour chaque k de $\{1, ..., n\}$ on pose $\lambda_k = 2\left(1 - \cos\frac{k\pi}{n+1}\right)$. En simplifiant l'expression $-\sin\left((p-1)\theta\right) + 2\sin\left(p\theta\right) - \sin\left((p+1)\theta\right)$,

montrer que les λ_k sont les valeurs propres de A et indiquer une base de vecteurs propres de A, par leurs composantes sur la base canonique (e_1, \ldots, e_n) de \mathbb{R}^n .

2) On se propose de déterminer autrement les valeurs propres de A.

On désigne par I la matrice identité d'ordre n et l'on pose B=A-2I.

Pour chaque $n \ge 1$, on désigne par P_n le polynôme caractéristique de $B: P_n: x \mapsto \det(xI - B)$.

- a) Déterminer une relation de récurrence entre $P_n(x)$, $P_{n+1}(x)$ et $P_{n+2}(x)$.
- **b)** Pour x appartenant à l'intervalle]-2,2[, on pose $\theta=\arccos\left(\frac{x}{2}\right)$.

Donner une expression simple de $P_n(x)$ en fonction de θ .

Déterminer alors les valeurs propres de B, puis celles de A.

Problème A

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2, E un \mathbb{C} -espace vectoriel de dimension n et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. On note $\mathcal{M}_n(\mathbb{C})$ l'ensemble des matrices carrées d'ordre n à coefficients complexes et, si A en est un élément, le polynôme caractéristique de A sera $\chi_A(t) = \det(tI_n - A)$, où I_n désigne la matrice unité de $\mathcal{M}_n(\mathbb{C})$.

Pour $A = (a_{i,j})$ dans $\mathcal{M}_n(\mathbb{C})$, on note \overline{A} la matrice de terme général $\overline{a_{i,j}}$ et A^* la transposée de \overline{A} .

Partie I

On considère des complexes a_0, \ldots, a_{n-1} et l'on note u (resp. w) l'endomorphisme de E dont la matrice dans la base \mathcal{B} est A (resp. W), où

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \ddots & \ddots & a_{n-2} \\ a_{n-2} & a_{n-1} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_1 & a_2 \\ a_2 & & \ddots & \ddots & a_{n-2} & a_{n-1} & a_0 \end{pmatrix} \text{ et } W = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 & 0 \\ 0 & & \ddots & \ddots & \ddots & 1 & 0 \\ 0 & & \ddots & \ddots & \ddots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

On note enfin $P(X) = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} = \sum_{k=0}^{n-1} a_k X^k$.

- 1) a) Pour k comprisentre 1 et n, expliciter $w(e_k)$.
 - **b)** Pour $1 \le p \le n$, $1 \le k \le n$, calculer $w^p(e_k)$ (faire une récurrence sur p). En déduire que $w^n = \mathrm{Id}_E$.
 - c) Établir que w est diagonalisable, donner son spectre et ses sous-espaces propres. Prouver qu'il existe U inversible telle que $U^* = U^{-1}$ vérifiant : U^*WU est diagonale.
- 2) On note $\mathbb{C}[W]$ l'ensemble des R(W), lorsque R parcourt $\mathbb{C}[X]$.
 - a) Montrer que, si une matrice M est élément de $\mathbb{C}[W]$, alors U^*MU est diagonale.
 - b) Établir que tout élément de $\mathbb{C}[W]$ commute avec W.
 - c) Soit M une matrice qui commute avec W; on note m l'endomorphisme représenté par M dans la base \mathcal{B} . Montrer que tout sous-espace propre de w est stable par m. En déduire que U^*MU est diagonale, puis que M est élément de $\mathbb{C}[W]$ (on montrera que U^*MU est un polynôme en U^*WU). Conclusion?
 - \mathbf{d}) Diagonaliser A.
- 3) On note Q le polynôme caractéristique de A. En utilisant $\mathbf{2})\mathbf{d}$), prouver que les racines de Q sont réelles si et seulement si $A^* = A$.

Partie II: application aux équations algébriques de degré 3

Ici
$$n = 3$$
 et $W = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

On considère le polynôme à coefficients réels $Q\left(X\right)=X^{3}+pX+q,\,p\neq0.$

1) Soit
$$A = \begin{pmatrix} 0 & b & c \\ c & 0 & b \\ b & c & 0 \end{pmatrix}$$
. Montrer que $Q = \chi_A$ si et seulement si

$$\begin{cases} b^3 + c^3 &= -q \\ 3bc &= -p \end{cases}$$

et qu'il existe (b, c) dans \mathbb{C}^2 vérifiant ce système.

- 2) (b,c) étant ainsi choisi, exprimer A comme un polynôme en W et en déduire les racines de Q.
- 3) a) En utilisant le I.3), donner une condition nécessaire et suffisante simple sur b et c pour que les racines de Q soient réelles.
 - b) À l'aide de II.1), prouver que les racines de Q sont réelles si et seulement si $4p^3 + 27q^2 \le 0$.
- 4) <u>Exemple</u>: trouver les racines de $Q(X) = X^3 2X 12$.
- 5) Pour $P(X) = X^3 + \alpha X^2 + \beta X + \gamma$, en calculant P(X + t), montrer que la recherche des racines de P peut se ramener au cas précédent (*i.e.* le cas $\alpha = 0$).

Problème B

Notations

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit n un entier supérieur ou égal à 1. I_n désigne la matrice identité de $\mathcal{M}_n(\mathbb{K})$. Si f est un endomorphisme d'un espace vectoriel de dimension n représenté par la matrice A dans une base donnée, on note $\operatorname{Sp} f$ ou $\operatorname{Sp} A$ l'ensemble des valeurs propres de f, χ_f ou χ_A son polynôme caractéristique et $\operatorname{Tr} f$ ou $\operatorname{Tr} A$ sa trace.

En outre, si A appartient à $\mathcal{M}_n(\mathbb{R})$, on note $\operatorname{Sp}_{\mathbb{C}} A$ l'ensemble des valeurs propres de A, lorsque A est considérée comme un élément de $\mathcal{M}_n(\mathbb{C})$.

 $\mathbb{K}[X]$ est le \mathbb{K} -espace vectoriel des polynômes à coefficients dans \mathbb{K} et \mathbb{N}_n est l'ensemble $\{1, 2, \ldots, n\}$.

Partie I

Le but de la partie I est de prouver le théorème de CAYLEY-HAMILTON, que l'on n'utilisera donc pas dans cette partie. u désigne un endomorphisme de \mathbb{K}^n .

- 1) Soit F un sous-espace vectoriel de \mathbb{K}^n , stable par u. Si v désigne l'endomorphisme induit par u sur F, montrer que χ_v divise χ_u .
- 2) Pour tout x élément de \mathbb{K}^n , on définit l'ensemble $F_u(x)$ par :

$$F_u(x) = \{ y \in \mathbb{K}^n / \exists P \in \mathbb{K} [X] \quad y = P(u)(x) \}.$$

Montrer que $F_u(x)$ est un sous-espace vectoriel de \mathbb{K}^n stable par u.

- 3) Dans cette question, on suppose que x est un élément non nul de \mathbb{K}^n .
 - a) Montrer l'existence d'un plus petit entier naturel q pour lequel la famille de vecteurs $(x, u(x), \ldots, u^q(x))$ est liée. Pour la fin de cette partie, q est ainsi fixé.
 - **b)** Soit (a_0, a_1, \dots, a_q) une famille de scalaires non tous nuls telle que $\sum_{j=0}^q a_j.u^j(x) = 0$ et S le polynôme

de
$$\mathbb{K}[X]$$
 défini par $S(X) = \sum_{j=0}^{q} a_j.X^j$.

Montrer que a_q est non nul, puis que $(x, u(x), \dots, u^{q-1}(x))$ est une base de $F_u(x)$.

c) Pour tout $i \in \{0, 1, ..., q\}$, on pose $\alpha_i = \frac{a_i}{a_q}$ et l'on note v l'endomorphisme induit par u sur $F_u(x)$. Montrer que

$$\chi_v(X) = \sum_{i=0}^{q} \alpha_i X^i,$$

donner la valeur de $\chi_{v}(u)(x)$ et en déduire que :

le polynôme caractéristique de u est un polynôme annulateur de u.

Partie II

Pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{R})$ on note $h_{A,B}$ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}) \quad h_{A,B}(M) = AM - MB$$

et $\tilde{h}_{A,B}$ l'endomorphisme de $\mathcal{M}_{n}\left(\mathbb{C}\right)$ défini par :

$$\forall M \in \mathcal{M}_n(\mathbb{C}) \quad \tilde{h}_{A,B}(M) = AM - MB.$$

1) Soient A_0 et B_0 les matrices de $\mathcal{M}_2(\mathbb{R})$ données par :

$$A_0 = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$$
, $B_0 = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$

- a) Déterminer $\operatorname{Sp}_{\mathbb{C}} A_0$ et $\operatorname{Sp}_{\mathbb{C}} B_0$.
- b) On considère la base canonique $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ de $\mathcal{M}_2(\mathbb{R})$ et on note H_0 la matrice dans cette base de l'endomorphisme h_{A_0,B_0} .

Déterminer H_0 , puis $\operatorname{Sp}_{\mathbb{C}} H_0$ et vérifier que

$$\operatorname{Sp}_{\mathbb{C}} H_0 = \{ a - b, \ (a, b) \in \operatorname{Sp}_{\mathbb{C}} A_0 \times \operatorname{Sp}_{\mathbb{C}} B_0 \}.$$

c) Montrer que A_0 et B_0 sont diagonalisables dans $\mathcal{M}_2(\mathbb{R})$. En est-il de même de H_0 dans $\mathcal{M}_4(\mathbb{R})$? Soient maintenant A et B quelconques dans $\mathcal{M}_n(\mathbb{R})$.

On se propose d'étudier les liens existant entre la diagonalisabilité de A et B et celle de $h_{A,B}$.

2) Soient $a \in \operatorname{Sp}_{\mathbb{C}} A$ et $b \in \operatorname{Sp}_{\mathbb{C}} B$. Montrer qu'il existe $(V, W) \in (\mathbb{C}^n \setminus \{0\})^2$ vérifiant les trois conditions suivantes :

$$AV=a.V$$
 , ${}^tWB=b.{}^tW$ et V^tW est vecteur propre de $\tilde{h}_{A,B}.$

En déduire l'inclusion :

$$\{a-b, (a,b) \in \operatorname{Sp}_{\mathbb{C}} A \times \operatorname{Sp}_{\mathbb{C}} B\} \subset \operatorname{Sp} \tilde{h}_{A,B}.$$

3) Soient $(X_i)_{1 \le i \le n}$ et $(Y_j)_{1 \le j \le n}$ deux bases de \mathbb{R}^n .

Montrer que la famille de matrices $(X_i^t Y_j)_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{R})$.

En déduire que, si A et B sont diagonalisables dans $\mathcal{M}_n(\mathbb{R})$, il en est de même de $h_{A,B}$.

Calculer dans ce cas $\operatorname{Tr} h_{A,B}$.

4) On note a_1, a_2, \ldots, a_n les valeurs propres, non nécessairement distinctes, de A dans \mathbb{C} . En exprimant χ_A en fonction des a_i , montrer que la matrice $\chi_A(B)$ est inversible si et seulement si

$$\operatorname{Sp}_{\mathbb{C}} A \cap \operatorname{Sp}_{\mathbb{C}} B = \emptyset.$$

- 5) Soient $\lambda \in \operatorname{Sp} \tilde{h}_{A,B}$ et M un vecteur propre associé.
 - a) Montrer que, pour tout polynôme P de $\mathbb{C}[X]$, on a la relation : $P(A) \times M = M \times P(B + \lambda I_n)$.
 - b) Montrer que $\chi_A(B + \lambda I_n)$ est non inversible.
 - c) En déduire, en utilisant II.2 et II.4 :

$$\operatorname{Sp} \tilde{h}_{A,B} = \{ a - b, \ (a, b) \in \operatorname{Sp}_{\mathbb{C}} A \times \operatorname{Sp}_{\mathbb{C}} B \}.$$

6) Donner une condition nécessaire et suffisante pour qu'il existe M non nulle dans $\mathcal{M}_n(\mathbb{C})$ telle que AM = MB.

Dans toute la suite du problème, on suppose B = A et on considère l'endomorphisme $h_{A,A}$ que l'on notera plus simplement h_A .

7) On suppose A diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ et l'on note (V_1, V_2, \dots, V_n) une base de vecteurs propres de A, chaque vecteur V_i étant associé à la valeur propre λ_i . Pour tout $(i, j) \in \mathbb{N}_n^2$, on définit la matrice $M_{i,j}$ de $\mathcal{M}_n(\mathbb{R})$ par :

$$\forall k \in \mathbb{N}_n \quad M_{i,j} V_k = \delta_{j,k} V_i \quad \text{où} \quad \delta_{j,k} = \begin{cases} 1 & \text{si } j = k \\ 0 & \text{si } j \neq k \end{cases}$$

- a) Montrer que la famille de matrices $(M_{i,j})_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{R})$.
- **b)** Montrer que, pour tout $(i, j, k) \in \mathbb{N}_n^3$:

$$h_A(M_{i,j}) V_k = (\lambda_i - \lambda_j) . M_{i,j} V_k$$

et en déduire que les matrices $M_{i,j}$ sont des vecteurs propres de h_A .

c) On note $\mu_1, \mu_2, \dots, \mu_p$ les valeurs propres distinctes de A, m_1, m_2, \dots, m_p leurs ordres de multiplicité respectifs et $J = \{(i, j) \in \mathbb{N}_n^2 / \lambda_i = \lambda_j\}$. Montrer que :

$$\operatorname{Ker} h_A = \operatorname{Vect} \{ M_{i,j}, \ (i,j) \in J \} \quad \text{et} \quad \dim \operatorname{Ker} h_A = \sum_{i=1}^p m_i^2.$$

- d) Montrer que dim Ker $h_A \geq n$ et que l'égalité a lieu si et seulement si A admet n valeurs propres distinctes.
- e) On note $\mathbb{R}[A] = \{Q \in \mathcal{M}_n(\mathbb{R}) / \exists P \in \mathbb{R}[X] \mid Q = P(A)\}$. Montrer que si les n valeurs propres de A sont distinctes, $\{I_n, A, A^2, \dots, A^{n-1}\}$ constitue une base de $\mathbb{R}[A]$ et en déduire dans ce cas $\operatorname{Ker} h_A = \mathbb{R}[A]$.
- 8) On suppose h_A diagonalisable et on note $(P_{i,j})_{1 \leq i,j \leq n}$ une base de vecteurs propres de h_A , chaque matrice $P_{i,j}$ étant associée à la valeur propre $\lambda_{i,j}$.

Montrer que si X est un vecteur propre de A associé à la valeur propre λ , la famille $(P_{i,j}X)_{1 \leq i,j \leq n}$ est une famille génératrice de \mathbb{R}^n et en déduire que A est diagonalisable.