TD AL 5 : Nombres complexes

Exercice 1 Forme algébrique

1/ Mettre sous forme a + ib les nombres complexes suivants :

a)
$$z_1 = \frac{4}{1-i}$$
,

b)
$$z_2 = \frac{(1+i\sqrt{3})^5}{(1-i)^9}$$

2/ Démontrer que $1+j+j^2=0$ (avec $j=\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}}$), en déduire la forme algébrique de : $z_3=\frac{(1+j)^7}{i^5}$

Exercice 2 Module et argument

Déterminer le module et un argument des nombres complexes suivants :

$$1/2\sqrt{2} + 2i\sqrt{2}$$
.

$$2/\frac{(4-4i)^2}{(1+i\sqrt{3})^3}$$

$$3/-4e^{i\frac{\pi}{3}}$$

$$4/e^{i\frac{\pi}{3}}-e^{i\frac{\pi}{4}}$$

5 / 1 +
$$e^{i\varphi}$$

$$6 / \frac{1 + \cos \varphi + \mathrm{i} \sin \varphi}{1 - \cos \varphi - \mathrm{i} \sin \varphi}, \quad (\varphi \neq 2k\pi, \ k \in \mathbb{Z}).$$

$$7 / \frac{1 + \mathrm{i} \tan \varphi}{1 - \mathrm{i} \tan \varphi}, \quad (\varphi \neq \pi/2 + k\pi, \ k \in \mathbb{Z}).$$

7/
$$\frac{1+i\tan\varphi}{1-i\tan\varphi}$$
, $(\varphi\neq\pi/2+k\pi,\ k\in\mathbb{Z})$

8/
$$1 + \sin \varphi - i \cos \varphi$$
, $(0 \le \varphi \le \pi)$.

Exercice 3 Module et argument

Soient z, z' deux nombres complexes de module 1 tels que $1 + zz' \neq 0$. Montrer que $Z = \frac{z + z'}{1 + zz'}$ est réel.

Exercice 4

Étudier l'injectivité, la surjectivité et la bijectivité des applications suivantes :

1/
$$f: \mathbb{C} \to \mathbb{C}, f: z \mapsto \overline{z}.$$

3/
$$f: \mathbb{C} \to \mathbb{C}$$
, $f: z \mapsto az + b$ avec $(a, b) \in \mathbb{C}^* \times \mathbb{C}$.

$$2/f: \mathbb{C} \to \mathbb{R}_+, \ f: z \mapsto |z|.$$

Exercice 5

Soit
$$P = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$$
 et $D = \{z \in \mathbb{C} \mid |z| < 1\}$.

Montrer que f définie $f(z) = \frac{z - i}{z + i}$ est une bijection de P vers D.

Exercice 6 Transformation homographique

Soit
$$f:$$

$$\begin{array}{ccc}
\mathbb{C}\setminus\{i\} & \longrightarrow & \mathbb{C}\{1\} \\
z & \longmapsto & \frac{z+i}{z-i}
\end{array}$$

1/ Montrer que f est bijective

2/ Déterminer $f(\mathbb{R})$, $f(\mathbb{U} \setminus \{i\})$, $f(i \mathbb{R} \setminus \{i\})$.

Exercice 7 Triangle équilatéral

Soient $a, b, c \in \mathbb{C}$ distincts. Montrer que les propositions suivantes sont équivalentes :

$$1/\{a,b,c\}$$
 est un triangle équilatéral.

$$3/a^2 + b^2 + c^2 = ab + ac + bc$$

$$2/j$$
 ou j^2 est racine de $az^2 + bz + c = 0$.

4/
$$\frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a} = 0.$$

Exercice 8

Dans \mathbb{C} on définit la relation \mathcal{R} par :

$$z \mathcal{R} z' \iff |z| = |z'|.$$

- 1/ Montrer que ${\mathcal R}$ est une relation d'équivalence.
- 2/ Déterminer la classe d'équivalence de 1 et la représenter.

Exercice 9 Configuration de points

Déterminer les nombres $z \in \mathbb{C}$ tels que :

$$1/|z-1| \leqslant 4$$

6/
$$\operatorname{arg}\left(\frac{\mathrm{i}-z}{2-z}\right) \equiv \frac{\pi}{2}[\pi].$$

$$2/\arg(z) \equiv \frac{\pi}{4}[2\pi]$$

7/ ABC soit un triangle équilatéral direct avec A(1+i), B(4+3i) et M(z).

$$3/|z-1+2i|=4$$

$$8/z, z^2, z^4$$
 sont alignés.

4/
$$\arg(z+1-i) \equiv \frac{\pi}{3}[\pi]$$

$$9/1, z, z^2$$
 forment un triangle rectangle.

$$|z-1| = |z-i|$$

10/
$$z, \frac{1}{z}$$
, – i sont alignés.

Exercice 10 Cercle

Trouver les complexes $z \in \mathbb{C}^*$ tels que tels que z, 1-z et 1/z aient des images sur le même cercle de centre O.

Exercice 11 z + 1/z = 2

Trouver les complexes $z \in \mathbb{C}^*$ tels que $\left|z + \frac{1}{z}\right| = 2$.

Exercice 12 Racines de l'unité

- 1/ Résoudre dans \mathbb{C} l'équation $z^4 1 = 0$.

2/ En déduire les solutions dans
$$\mathbb C$$
 de l'équation $z^3+z^2+z+1=0$.
3/ Résoudre dans $\mathbb C$ l'équation $\left(\frac{3z+\mathrm{i}}{z-\mathrm{i}}\right)^3+\left(\frac{3z+\mathrm{i}}{z-\mathrm{i}}\right)^2+\left(\frac{3z+\mathrm{i}}{z-\mathrm{i}}\right)+1=0$

Exercice 13 | Racines de l'unité

Résoudre :

1/
$$(z+1)^n = (z-1)^n$$
.

$$5/\left(\frac{1+\mathrm{i}\,x}{1-\mathrm{i}\,x}\right)^n = \frac{1+\mathrm{i}\tan a}{1-\mathrm{i}\tan a}.$$

$$2/ z^4 - z^3 + z^2 - z + 1 = 0.$$

6/
$$\left(\frac{z+1}{z-1}\right)^3 + \left(\frac{z-1}{z+1}\right)^3 = 0.$$

7/ $z^4 = \frac{1-i}{1+i\sqrt{3}}.$

$$3/1 + 2z + 2z^2 + \dots + 2z^{n-1} + z^n = 0.$$

$$7/z^4 = \frac{1-i}{1+i\sqrt{3}}$$

$$\mathbf{4/}\ \overline{z}=z^{n-1}.$$

Exercice 14 Sommes sur les racines de l'unité

Soit
$$\omega = e^{2i\pi/n}$$
. Calculer $\sum_{k=0}^{n-1} (1 + \omega^k)^n$.

Exercice 15
$$e^{2i\pi/7}$$

Soit
$$z = e^{2i\pi/7}$$
 et $u = z + z^2 + z^4$, $v = z^3 + z^5 + z^6$.

1/ Calculer u + v et u^2 .

2/ En déduire $\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$.

Exercice 16 Position des racines carrées

Soit $z \in \mathbb{C}$ et p,q ses racines carrées. A quelle condition z,p,q forment-ils un triangle rectangle en z?

Exercice 17 Équations du second degré

Résoudre dans $\mathbb C$:

$$1/ z^2 \sin^2 t - 4z \sin t + 4 + \cos^2 t = 0.$$

$$2/(3z^2+z+1)^2+(z^2+2z+2)^2=0$$

$$4/z^4 - (5-14i)z^2 - 2(5i+12) = 0.$$

$$3/27(z-1)^6+(z+1)^6=0.$$

$$5/z^4 + 6z^3 + 9z^2 + 100 = 0.$$

Exercice 18 Équation du second degré

Comment faut-il choisir $m \in \mathbb{C}$ pour que l'équation : $z^2 - (2 + i m)z - (1 + i m) = 0$ admette deux racines imaginaires conjuguées ?

Exercice 19 Moyennes géométrique et arithmétique

- 1/ Soient $u, v \in \mathbb{C}$. Montrer que $|u+v|^2 + |u-v|^2 = 2|u|^2 + 2|v|^2$.
- 2/ Soient $\alpha, \beta \in \mathbb{C}$, $m = \frac{\alpha + \beta}{2}$ et μ une racine carrée de $\alpha\beta$. Montrer que $|\alpha| + |\beta| = |m + \mu| + |m \mu|$.

Exercice 20 Transformations trigonométriques

- 1/ Pour $x \in \mathbb{R}$, Linéariser $\cos^4 x \cdot \sin^2 x$.
- 2/ Pour $x \in \mathbb{R}$, exprimer $\sin(5x)$ comme produit de $\sin(x)$ par un polynôme en $\cos x$.

Exercice 21 Équation trigonométrique

Soit
$$a \in \mathbb{R}$$
. Résoudre :
$$\begin{cases} \cos(a) + \cos(a+x) + \cos(a+y) = 0\\ \sin(a) + \sin(a+x) + \sin(a+y) = 0. \end{cases}$$

Exercise 22
$$\sum \cos^{2p}(x + k\pi/2p)$$

Soit $\theta \in \mathbb{R}$.

- 1/ Simplifier $\cos^4\theta + \cos^4(\theta + \frac{\pi}{4}) + \cos^4(\theta + \frac{2\pi}{4}) + \cos^4(\theta + \frac{3\pi}{4})$.
- 2/ Simplifier $\cos^6 \theta + \cos^6 (\theta + \frac{\pi}{6}) + \dots + \cos^6 (\theta + \frac{5\pi}{6})$.
- 3/ Simplifier $\cos^{2p}\theta + \cos^{2p}(\theta + \frac{\pi}{2p}) + \dots + \cos^{2p}(\theta + \frac{(2p-1)\pi}{2p})$.

Exercice 23
$$\sum \cos(kx)/\cos x^k = 0$$

Résoudre :
$$\sum_{k=0}^{n-1} \frac{\cos(kx)}{\cos^k x} = 0.$$

Exercice 24
$$z = (1 + i a)/(1 - i a)$$

Soit
$$z \in \mathbb{U}$$
. Peut-on trouver $a \in \mathbb{R}$ tel que $z = \frac{1 + ia}{1 - ia}$?

Exercice 25 Points cocycliques

Dans le plan complexe rapporté au R.O.N. $(O; \vec{u}, \vec{v})$, on considère les points U(1), V(i), M(z), M'(z'), P(zz') où z et z'sont 2 nombres complexes distincts et différents de 0 et de 1.

- 1/ Déterminer l'ensemble des points M tels que $\frac{z-\mathrm{i}}{z-1}$ soit un imaginaire pur non nul.
- 2/ Démontrer que M, M', P sont distincts 2 à 2 . 3/ Démontrer que arg $\frac{zz'-z'}{zz'-z} = \arg\frac{z'}{z'-1} \arg\frac{z}{z-1} \pmod{2\pi}$.
- 4/ En déduire que M, M', P sont alignés si et seulement si les points O, U, M, M' sont alignés ou cocycliques .