Table des matières

8	Équations différentielles linéaires			1
	1	Équat	ions différentielles linéaires du 1 ^{er} ordre	
		1.1	Généralités	
		1.2	Structure des solutions	
		1.3	Recherche de solutions particulières de (\mathcal{E}) : $y' + a(x)y = b(x)$	
		1.4	Problème de Cauchy	
	2	Équat	ions différentielles linéaires scalaires du 2 nd ordre	
		$2.\overline{1}$	Généralités	
		2.2	Structure des solutions	
		2.3	Recherche de solutions particulières de (\mathcal{E}) : $y'' + ay' + by = c(x)$	
		2.4	Problème de Cauchy	

Chapitre 8

Équations différentielles linéaires

Dans ce chapitre \mathbf{K} désigne \mathbb{R} ou \mathbb{C} .

1 Équations différentielles linéaires du 1^{er} ordre

1.1 Généralités

Définitions 1.1 (Équations différentielles linéaires du 1^{er} ordre).

(i) L'équation différentielle :

$$y' + a(x)y = b(x)$$
 (\mathcal{E})

où a et b sont des fonctions continues de $\mathbb R$ dans $\mathbf K$, est appelée équation différentielle linéaire du premier ordre.

(ii) On appelle solution de (\mathcal{E}) sur un intervalle I de \mathbb{R} toute fonction f de \mathbf{K}^I dérivable sur I telle que :

$$\forall x \in I, \ f'(x) + a(x)f(x) = b(x).$$

Remarques.

- 1. Si le cas suivant $\alpha(x)y' + \beta(x)y = \gamma(x)$ se présente, on se place sur un intervalle I tel que $\alpha(x) \neq 0$ pour tout $x \in I$. La division par α permet de retrouver la **forme résolue** y' + a(x)y = b(x)
- 2. On notera $S_{\mathcal{E}}$ l'ensemble des solutions de (\mathcal{E}) .
- 3. Le cas particulier c = 0, $(\mathcal{H}): y' + a(x)y = 0$, est appelée équation homogène.

Dans la suite on supposera que a et b sont des fonctions continues sur I.

1.2 Structure des solutions

Théorème 1.1 (Forme générale d'une solution de (\mathcal{H})). Soit l'équation homogène $(\mathcal{H}): y' + a(x)y = 0$ et I un intervalle où la fonction a ne s'annule pas, alors l'ensemble des solutions de (\mathcal{H}) est :

$$\mathcal{S}_{\mathcal{H}} = \left\{ f: I \to \mathbf{K}, f(x) = C \operatorname{e}^{-\int a(x) \mathrm{d}x} \ \operatorname{avec} \ C \in \mathbf{K} \right\}.$$

Exemples 1.1. Résoudre les équations différentielles suivantes :

1.
$$y' + y = 0$$
;

2.
$$y' + xy = 0$$
;

3.
$$(x-1)y' + xy = 0$$
.

Théorème 1.2 (Forme générale d'une solution de (\mathcal{E})).

La solution générale de l'équation différentielle linéaire (\mathcal{E}) : y' + a(x)y = b(x) est la somme d'une solution particulière de (\mathcal{E}) et de la solution générale de (\mathcal{H}) .

Recherche de solutions particulières de (\mathcal{E}) : y' + a(x)y = b(x)1.3

Solution particulière évidente 1.3.1

Dans certains cas, l'équation différentielle (\mathcal{E}) admet une solution particulière simple à trouver, par exemple une fonction constante ou une autre forme particulière.

Exemples 1.2. Résoudre les équations différentielles suivantes :

1.
$$y' - y = 1$$
;

2.
$$y' - y = 2x - x^2$$

2.
$$y' - y = 2x - x^2$$
; 3. $(x - 1)y' + xy = x^2 - 1$.

1.3.2 Méthode de la variation de la constante

Lorsqu'il n'apparaît aucune solution évidente, on dispose d'une méthode systématique pour trouver une solution particulière.

Soit h une solution de l'équation homogène associée. On cherche une solution de (\mathcal{E}) sous la forme $f = z \times h$ où z est une fonction dérivable sur I.

La dérivée de f donne, $f' = z' \times h + z \times h'$ et en remplaçant cette expression dans (\mathcal{E}) et en tenant compte que h est solution de (\mathcal{E}) , on obtient :

$$(z'h + zh') + a(zh) = b \iff z'h = b \iff z = \int \frac{b}{h}.$$

Exemples 1.3. Résoudre les équations différentielles suivantes :

1.
$$y' = 3y + (3x^2 + 1)e^{2x}$$
;

2.
$$(x-1)y' + xy = \sin x$$
.

1.3.3 Superposition des solutions :

Proposition 1.1 (Superposition des solutions).

Lorsque $b(x) = \sum_{k=1}^{n} b_k(x)$, on cherche une solution particulière f_k de $y' + a(x)y = b_k(x)$,

une solution particulière de (\mathcal{E}) est alors $f = \sum_{k=1}^{n} f_k$.

Exemple 1.4. Résoudre l'équation $y' - y = 1 - x^2 + e^{4x}$.

Problème de Cauchy

Proposition 1.2 (Existence et unicité de la solution).

Soit y' + a(x)y = b(x) une équation différentielle linéaire du premier ordre, où $a, b: I \to \mathbf{K}$ sont des fonctions continues sur un intervalle ouvert I. Alors, pour tout $x_0 \in I$ et pour tout $y_0 \in \mathbf{K}$, il existe une et une seule solution y telle que $y(x_0) = y_0$.

Exemple 1.5. Résoudre l'équation y' = 3y + 3 avec la condition y(0) = 2.

-`@-Méthode

Pour résoudre une équation différentielle du type $\alpha(x)y' + \beta(x)y = \gamma(x)$

- 1. On se place sur un intervalle I où α ne s'annule pas, et on divise par $\alpha(x)$ pour se ramener à une équation (\mathcal{E}) de la forme y' + a(x)y = b(x).
- 2. On résout l'équation homogène associée, dont la solution générale est :

$$y_0: x \mapsto C e^A \text{ avec } A = -\int a(x) dx.$$

- 3. On cherche une solution particulière y_P évidente si cela est possible (cas où les coefficients sont constants) sinon on cherche y_P par la méthode de variation de la constante.
- 4. La solution générale de (\mathcal{E}) est la somme $y_0 + y_p$.
- 5. On cherche la solution unique de (\mathcal{E}) si une condition initiale est donnée.

2 Équations différentielles linéaires scalaires du 2nd ordre

2.1 Généralités

Définitions 2.1 (Équations différentielles linéaires du 2nd ordre).

(i) L'équation différentielle :

$$y'' + ay' + by = c(x) \quad (\mathcal{E})$$

où $a,b \in \mathbf{K}$ et c est une fonction continue de \mathbb{R} dans \mathbf{K} , est appelée équation différentielle linéaire du second ordre à coefficients constants.

(ii) On appelle solution de (\mathcal{E}) sur un intervalle I de \mathbb{R} toute fonction f de \mathbf{K}^I deux fois dérivable sur I telle que :

$$\forall x \in I, \ f''(x) + af'(x) + bf(x) = c(x).$$

Remarques.

- 1. On notera $S_{\mathcal{E}}$ l'ensemble des solutions de (\mathcal{E}) .
- 2. Le cas particulier c = 0, (\mathcal{H}) : y'' + ay' + by = 0, est appelée équation homogène.

2.2 Structure des solutions

Théorème 2.1 (Forme générale d'une solution de (\mathcal{E})). La solution générale de l'équation différentielle linéaire (\mathcal{E}) : y'' + ay' + by = c(x) est la somme d'une solution particulière de (\mathcal{E}) et de la solution générale de (\mathcal{H}) .

Définition 2.1 (Équation caractéristique).

L'équation $r^2 + ar + b = 0$ est appelée équation caractéristique de (\mathcal{H}) .

Théorème 2.2 (Résolution de (\mathcal{H}) dans \mathbb{C}). $Soit\ (a,b)\in\mathbb{C}^2$.

(i) Si l'équation caractéristique admet deux solutions distinctes r et s alors :

$$\mathcal{S}_{\mathcal{H}} = \{ f : \mathbb{R} \to \mathbb{C}, f(x) = A e^{rx} + B e^{sx}, (A, B) \in \mathbb{C}^2 \} ;$$

(ii) si l'équation caractéristique admet une solution double r alors :

$$S_{\mathcal{H}} = \{ f : \mathbb{R} \to \mathbb{C}, f(x) = (Ax + B) e^{rx}, (A, B) \in \mathbb{C}^2 \}.$$

Exemple 2.1. Résoudre dans \mathbb{C} l'équation y'' - y' + (1+i)y = 0.

Théorème 2.3 (Résolution de (\mathcal{H}) dans \mathbb{R}). Soit $(a,b) \in \mathbb{R}^2$.

(i) Si l'équation caractéristique admet deux solutions distinctes r et s alors :

$$\mathcal{S}_{\mathcal{H}} = \left\{ f : \mathbb{R} \to \mathbb{R}, f(x) = A e^{rx} + B e^{sx}, (A, B) \in \mathbb{R}^2 \right\};$$

(ii) si l'équation caractéristique admet une solution double r alors :

$$\mathcal{S}_{\mathcal{H}} = \left\{ f : \mathbb{R} \to \mathbb{R}, f(x) = (Ax + B) e^{rx}, (A, B) \in \mathbb{R}^2 \right\};$$

(iii) si l'équation caractéristique n'admet pas de solution réelle, alors elle possède deux solutions dans $\mathbb{C}: r=a+\mathrm{i}b$ et $s=\overline{r}=a-\mathrm{i}b$ et on a:

$$\mathcal{S}_{\mathcal{H}} = \left\{ f : \mathbb{R} \to \mathbb{R}, f(x) = \left(A \cos(bx) + B \sin(bx) \right) e^{ax}, (A, B) \in \mathbb{R}^2 \right\}.$$

Exemples 2.2. Résoudre dans \mathbb{R} les équations différentielles suivantes : y'' + 4y' + 3y = 0, y'' + y' + y = 0 et y'' + 2y' + y = 0.

- 2.3 Recherche de solutions particulières de (\mathcal{E}) : y'' + ay' + by = c(x)
- 2.3.1 Étude du cas : c(x) = P(x) où P est un polynôme de degré n

Proposition 2.1 (Cas d'un polynôme de degré n).

Soit (\mathcal{E}) : y'' + ay' + by = P avec P polynôme de degré n,

- (i) si $b \neq 0$, (\mathcal{E}) admet une solution particulière qui est un polynôme de degré n;
- (ii) si b=0 et $a\neq 0$, ($\mathcal E$) admet une solution particulière qui est un polynôme de degré n+1:
- (iii) si b = a = 0, (\mathcal{E}) admet une solution particulière qui est un polynôme de degré n+2.

Exemples 2.3. Résoudre dans \mathbb{R} les équations différentielles suivantes : $y'' + y' - 2y = 2x^2 - 3x + 1$, $y'' + 2y' = 3x^2$ et $y'' = x^2 + x$.

2.3.2 Étude du cas : $c(x) = P(x) e^{mx}$ où P est un polynôme de degré n et $m \in \mathbb{C}$

Proposition 2.2 (Cas où $c(x) = P(x) e^{mx}$).

Soit (\mathcal{E}) : $y'' + ay' + by = P(x)e^{mx}$ avec P polynôme de degré n et $m \in \mathbb{C}$.

(i) si m n'est pas solution de l'équation caractéristique, (\mathcal{E}) admet une solution particulière de la forme :

$$f(x) = e^{mx} \times Q(x)$$
 avec Q un polynôme de degré n ;

(ii) si m est une racine simple de de l'équation caractéristique, (\mathcal{E}) admet une solution particulière de la forme :

$$f(x) = e^{mx} \times Q(x)$$
 avec Q un polynôme de degré $n+1$;

(iii) si m est une racine double de de l'équation caractéristique, (\mathcal{E}) admet une solution particulière de la forme :

$$f(x) = e^{mx} \times Q(x)$$
 avec Q un polynôme de degré $n+2$.

Remarque. On peut aussi poser $y = ze^{mx}$ et se ramener à la proposition (2.1).

Proposition 2.3 (Cas où $c(x) = A\cos{(mx)}$ ou $c(x) = A\sin{(mx)}$). Soit $(\mathcal{E}): y'' + ay' + by = A\cos{(mx)}$ (resp $y'' + ay' + by = A\sin{(mx)}$) avec $A \in \mathbb{R}$ et $m \in \mathbb{R}$

(i) si $(i \times m)$ n'est pas solution de l'équation caractéristique, (\mathcal{E}) admet une solution particulière de la forme :

$$f(x) = C_1 \cos(mx) + C_2 \sin(mx) \ avec (C_1, C_2) \in \mathbb{R}^2;$$

(ii) si $(i \times m)$ est une racine de l'équation caractéristique, (\mathcal{E}) admet une solution particulière de la forme :

$$f(x) = (C_1x + D_1)\cos(mx) + (C_2x + D_2)\sin(mx)$$
 avec $(C_1, C_2, D_1, D_2) \in \mathbb{R}^4$.

Exemples 2.4. Résoudre dans \mathbb{R} les équations différentielles suivantes : $y'' + y = x e^x$, $y'' + y = \cos x$ et $y'' + 2y' + y = e^{-x}$.

2.4 Problème de Cauchy

Proposition 2.4 (Existence et unicité de la solution). Soient $x_0 \in \mathbb{R}, y_0 \in \mathbf{K}$ et $z_0 \in \mathbf{K}$ donnés, l'équation $(\mathcal{E}): y'' + ay' + by = c(x)$ admet une unique solution f vérifiant $f(x_0) = y_0$ et $f'(x_0) = z_0$.

Exemple 2.5. Résoudre l'équation $y'' + 9y = x^2 + 1$ avec condition y(0) = 0, y'(0) = 0.

- Pour résoudre une équation différentielle linéaire du type y" + ay' + by = c(x)
 1. On résout l'équation homogène associée, dont la solution générale dépendation de son équation caractéristique r² + ar + b = 0 dans K.
 2. On cherche une solution particulière de l'équation différentielle avec section avec l'une des méthodes vues dans ce chapitre
 3. La solution général de (Ɛ) est la somme y₀ + y₀.
 4. On cherche la solution unique de (Ɛ) si des conditions initiales sont don 1. On résout l'équation homogène associée, dont la solution générale dépend de la résolution de son équation caractéristique $r^2+ar+b=0$ dans ${\bf K}$.
 - 2. On cherche une solution particulière de l'équation différentielle avec second membre

 - 4. On cherche la solution unique de (\mathcal{E}) si des conditions initiales sont données.