EXERCICE 1

1. Après en avoir donné la signification (littérale), donner la négation de l'assertion suivante:

$$\forall (x, y) \in \mathbb{R}^2, (x < y) \Rightarrow (f(x) > f(y)),$$

où f désigne une fonction réelle.

2. On considère l'assertion A : « noir et blanc donnent du gris », formalisée par :

$$N \wedge B \Rightarrow G$$

On notera \overline{P} la négation d'une assertion P.

- a) Donner la contraposée (formelle) de l'assertion A.
- b) Donner la négation (formelle) de A.
- **3.** Montrer l'assertion suivante :

$$(x^2 > x) \Rightarrow ((x < 0) \lor (x > 1))$$

4. f désigne une fonction réelle croissante sur \mathbb{R} . La suite (U_n) est définie par son premier terme U_0 et $\forall n \in \mathbb{N}, U_{n+1} = f(U_n)$. On suppose que $U_0 > U_1$.

Montrer par récurrence alors la suite (U_n) est décroissante.

EXERCICE 2

Résoudre les équations suivantes :

- 1. $\cos x + \sqrt{3} \sin x = 1$
- 2. $\cos(2x) \sin(2x) = 0$
- 3. $\cos x + \sqrt{3}\sin x + \sqrt{2}\cos(2x) \sqrt{2}\sin(2x) = 0$
- $4. \frac{\sin(2x)}{\cos(2x)} = \frac{\cos(x)}{\sin(x)}$

EXERCICE 3

- **1.** Donner les solutions complexes de l'équation $Z^4 = 1$.
- **2.** En déduire les solutions dans $\mathbb C$ de l'équation :

$$(z^2+1)^4 = (z-3)^4$$
 (E)

EXERCICE 4

Le but de cet exercice est de résoudre dans \mathbb{R}_+^* l'équation :

$$x^{\sqrt{x}} = \frac{1}{2} \Leftrightarrow e^{\sqrt{x} \ln x} = \frac{1}{2} \quad (1)$$

- **1.** On pose $f: x \mapsto \sqrt{x} \ln x + \ln 2$.
- a) Donner le domaine de définition de f, et préciser ses limites aux bornes de ce domaine.
- **b)** Etudier les variations de f, et dresser son tableau de variations complet.
- c) Déterminer, en le justifiant, le nombre de solutions de l'équation f(x) = 0.

On donne $\ln 2 \simeq 0.69$ et $\frac{1}{e} \simeq 0.36$.

- **2.** On va déterminer les solutions de l'équation f(x) = 0 sous la forme $x = \frac{1}{n^2}$, avec $n \in \mathbb{N}^*$.
- a) Montrer que:

$$f\left(\frac{1}{n^2}\right) = 0 \Leftrightarrow n^2 = 2^n$$

- **b)** En déduire, par l'absurde, que n est pair puis, en posant $n=2p,\ p\in\mathbb{N}^*$, que $2^{p-1}=p$.
- c) Trouver deux solutions évidentes à cette dernière équation, et en déduire les solutions de l'équation f(x) = 0.
- 3. Conclure en donnant toutes les solutions de l'équation (1).

EXERCICE 5

1. Démontrer, à l'aide d'une étude de fonction, que :

$$\forall a \in [0;1], \ a(1-a)^2 \le \frac{4}{27}$$

- **2.** Soit a un réel de [0; 1]. On pose $f_a: x \mapsto -ax^2 + a(1-a)x$.
- a) Déterminer le maximum de f_a sur [0; 1-a].
- **b**) En déduire la propriété suivante : si a, b, c sont trois réels positifs tels que a + b + c = 1 alors $abc \le \frac{1}{27}$.
- c) Dans quels cas l'inégalité précédente est-elle une égalité ?
- **3.** En utilisant l'inégalité précédente, montrer que, pour tous réels positifs x, y, z on a :

$$xyz \le \left(\frac{x+y+z}{3}\right)^3$$

4. Montrer que l'inégalité précédente est une égalité si, et seulement si x = y = z.

Math Sup ICAM Toulouse