Primitives (calcul direct ou reconnaître $f' \times g' \circ f$)

Exercice 1 Calculer une primitive de f(x) lorsque f(x) =

Exercice 2 Calculer une primitive de f(x) lorsque f(x) =

①
$$\frac{1}{3x+5}$$
 ② $\frac{1}{x^2+2x+1}$ ③ $\frac{1}{x^2-5x+6}$ ④ $\frac{1}{x^2-1}$ ⑤ $\frac{2}{4x^2+9}$ ⑥ $\frac{1}{x^2-x+1}$ ⑦ $\frac{1}{x^2+2x+3}$ ⑧ $\frac{1}{x^2+6x+10}$

Exercice 3 Calculer une primitive de f(x) lorsque f(x) =

①
$$xe^{-x^2}$$
 ② $\frac{x}{\sqrt{1-x^2}}$ ③ $\frac{\sin(\ln x)}{x}$ ④ $\frac{\sin x}{1+2\cos x}$ ⑤ $\frac{e^x}{2+e^x}$ ⑤ $\frac{1}{x\ln x}$ ⑦ $\frac{1-\ln x}{x}$ ⑧ $\frac{x}{1+x^4}$

 $\textbf{Exercice 4} \ \ \textit{Calculer} \int \frac{x}{x^2-3x+2} dx \ \ (\textit{trouver a et b r\'eels tels que} \ \frac{x^4+2x^2-1}{x^2-3x+2} = \frac{a}{x-1} + \frac{b}{x-2}).$

 $\textbf{Exercice 5} \ \ \textit{Calculer} \int \frac{x^2}{(x+1)\left(x^2+1\right)} dx \ \ (\textit{trouver } a,b,c \ \textit{r\'eels tels que } \frac{x^2}{(x+1)\left(x^2+1\right)} = \frac{a}{x+1} + \frac{bx+c}{x^2+1}).$

Théorème fondamental du calcul intégral

Exercice 6 Préciser le domaine de définition, de dérivabilité et la dérivée des fonctions définies par

①
$$\int_{0}^{x} e^{-t^{2}} dt$$
 ② $\int_{0}^{x} \frac{dt}{\sqrt{1-t^{4}}}$ ③ $\int_{x}^{x^{2}} \frac{dt}{\sqrt{1-t^{4}}}$ ④ $\int_{x}^{x^{2}} \frac{dt}{\sqrt{t^{4}-1}}$ ⑤ $\int_{x}^{2x} \frac{dt}{\ln t}$ ⑥ $\int_{x}^{x^{2}} \frac{dt}{\ln t}$ ⑦ $\int_{\sin x}^{\cos x} \sqrt{1-t^{4}} dt$ ⑧ $\int_{0}^{e^{x}} \frac{\arccos t}{1+t^{2}} dt$

Exercice 7 Soit $F(x) = \int_{x}^{2x} \frac{e^{-t^2}}{1+t} dt$. Préiciser le domaine de définition de F, le domaine de dérivabilité et l'expression de F'(x).

Exercice 8 Soit $F(x) = \int_{x}^{\frac{1}{x}} \frac{\arctan t}{t} dt$, quel est le domaine de définition de F? Calculer F'(x) et en déduire F.

★ Exercice 9 Etudier la fonction f définie par $f(x) = \int_0^{\cos^2 x} \arccos\left(\sqrt{t}\right) dt + \int_0^{\sin^2 x} \arcsin\left(\sqrt{t}\right) dt$.

Exercice 10 Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue, on définit $F:[0,1] \longrightarrow \mathbb{R}$ par $F(x) = \int_0^1 \min(x,t) f(t) dt$.

1. Montrer que F est C^2 sur [0,1] et calculer F''(x).

2. En déduire que pour $x \in [0,1]$, $F(x) = \int_0^x \left(\int_u^1 f(t) dt \right) du$.

Intégration par parties

Exercice 11 Calculer $\bigcirc \int_0^1 x e^x dx$, $\bigcirc \int_0^1 \ln(1+x) dx$ et $\bigcirc \int_0^1 2x \ln(1+x) dx$.

Exercice 12 Calculer les primitives de ① $f(x) = (x+1)e^{-x}$, ② $f(x) = (x^2+1)e^x$, ③ $f(x) = x\cos(x)e^{-x}$

Exercice 13 Soit $u_n = \int_1^e \ln^n x dx$ établir une relation de récurrence vérifiée par la suite $(u_n)_{n \in \mathbb{N}}$

Exercice 14 Soit $u_n = \int_0^\pi x^n \cos x dx$ établir une relation de récurrence vérifiée par la suite $(u_n)_{n \in \mathbb{N}}$.

★ Exercice 15 On définit, pour tout entier naturel n, l'intégrale I_n par $I_n = \int_0^1 x^n \sqrt{1-x} dx$. Montrer que pour $n \ge 1$, $I_n = \frac{2n}{2n+3}I_{n-1}$. Calculer I_0 , en déduire que $I_n = \frac{2^{2n+3}(n+2)!}{(2n+4)!}$.

Exercice 16 Montrer que $\forall k \geq 1$, $\int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(kt) dt = \frac{1}{k^2}$.

Exercice 17 On définit

$$I = \int_0^\pi \cos^4 x dx \ et \ J = \int_0^\pi \sin^4 x dx$$

1. Justifier que I peut s'écrire

$$I = \int_0^{\pi} \cos x \left(\cos x - \cos x \sin^2 x\right) dx$$

2. A l'aide d'une intégration par parties, montrer la relation

$$I = \int_0^\pi \sin^2 x dx - \frac{1}{3}J$$

Montrer de même que

$$J = \int_0^\pi \cos^2 x dx - \frac{1}{3}I$$

3. Donner les valeurs de I + J et de J - I. En déduire celles de I et de J.

Exercice 18 Soit $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$, donner une relation de récurrence pour la suite $(I_n)_{n \in \mathbb{N}}$. En déduire que (n+1) $I_{n+1}I_n = \frac{\pi}{2}$ pour $n \geq 0$.

Exercice 19 Calculer $\int_0^1 \frac{t \ln^2 (1+t^2)}{1+t^2} dt$. En déduire $\int_0^{\frac{\pi}{4}} \ln^2 (\cos u) \tan u \ du$.

Exercice 20 Soit $n \in \mathbb{N}$ et $k \in \{0, \dots, n\}$, on définit $I_{n,k} = \binom{n}{k} \int_{-1}^{1} (1+x)^{n-k} (1-x)^k dx$ où

- 1. Calculer, à n fixé, $\sum_{k=0}^{n} I_{n,k}$.
- 2. A l'aide d'un intégration par parties, montrer que pour $n \ge 1$ et k > 0, $I_{n,k} = I_{n,k-1}$.
- 3. En déduire $I_{n,k}$.

Exercice 21 Soient $(a,b) \in \mathbb{R}^2$ et $(p,q) \in \mathbb{N}^2$ on définit $B(p,q) = \int_a^b (x-a)^p (b-x)^q dx$

- 1. Montrer que si q > 0, $B(p,q) = \frac{q}{p+1}B(p+1,q-1)$. En déduire B(p,q).
- 2. Avec a=-1,b=1,p=q=n quelle égalité sur les coefficients du binôme obtient-on ?

Le changement de variables

Exercice 22 Calculer les intégrales suivantes à l'aide du changement de variable indiqué.

Exercice 23 Calculer $I = \int_0^{\frac{1}{2}} \sqrt{\frac{1+x}{1-x}} dx$ en posant $x = \cos \varphi$.

Exercise 24 $\int_0^{\frac{\pi}{2}} \frac{\sin x}{(1+\cos x)(1+\cos x+\sin x)} dx \text{ en posant } t = \tan \frac{x}{2}.$

Exercice 25 Soient a > 0 et b > 0, calculer $I = \int_a^b \frac{e^{\frac{x}{a}} - e^{\frac{b}{x}}}{x} dx$ en posant ux = ab.

Exercice 26 Calculer $\int_0^{\frac{\pi}{4}} \ln(1+\tan x) dx$ en posant $u = \frac{\pi}{4} - x$. En déduire $\int_0^1 \frac{\ln(1+t)}{1+t^2} dt$.

Exercice 27 Calculer $\int_{\frac{1}{3}}^{\frac{1}{8}} \frac{1+\sqrt{\frac{1+x}{x}}}{x} dx$ en posant $u=\sqrt{\frac{1+x}{x}}$, quel est le signe du résultat obtenu ?

Exercice 28 Pour x > 0, on définit $f(x) = \int_{x}^{\frac{1}{x}} \frac{\ln t}{1+t^2} dt$, justifier que f est dérivable, déterminer f' puis f. Retrouver le résultat avec le changement de variable $u = \frac{1}{t}$.

Exercice 29 Soit a > 0, on pose $I(a) = \int_0^a \frac{dx}{x + \sqrt{a^2 - x^2}}$, en posant $x = a \cos t$, et en posant $x = a \sin t$ calculer I(a).

Exercice 30 Soit a > 0, calculer $\int_a^{\frac{1}{a}} \frac{\ln x}{1+x^2} dx$ à l'aide d'un changement de variable qui laisse globalement les bornes inchangées (globalement !).

Exercice 31 Soit $f(t) = \frac{1}{\sqrt{1+t^4}}$ et F définie par $F(x) = \int_x^{2x} f(t)dt$, à l'aide du changement de variable $u = \frac{1}{t}$, établir, pour $x \neq 0$, une relation entre F(x) et $F\left(\frac{1}{2x}\right)$.

Divers calculs d'intégrales et de primitives

Exercice 32 Calculer les intégrales suivantes :

①
$$\int_{-3}^{0} |x^2 - x - 2| dx$$
 ② $\int_{0}^{3} x\sqrt{x + 1} dx$ ③ $\int_{0}^{\frac{\pi}{6}} \tan^2(x) dx$ ④ $\int_{0}^{\frac{\pi}{4}} \frac{\sin^4(x)}{\cos^2(x)} dx$

Exercice 33 Calculer $I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$ et $J = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx$ (un changement de variable affine montre que I = J, lequel ?).

Exercice 34 A l'aide d'IPP calculer les intégrales suivantes

①
$$\int_0^1 x^2 \arctan(x) dx$$
 ② $\int_1^e x \ln x dx$ ③ $\int_0^{\frac{\pi}{4}} \frac{x}{\cos^2(x)} dx$

$$3) \int_0^{\frac{\pi}{4}} \frac{x}{\cos^2(x)} dx$$

$$\textcircled{3} \int_{1}^{2} 2t^{3} e^{t^{2}+1} dt \qquad \qquad \textcircled{5} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{x \arcsin(x)}{\sqrt{1-x^{2}}} dx \qquad \qquad \textcircled{6} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(x) \ln(1-\cos(x)) dx$$

Exercice 35 Calculer sh $(\ln a)$, en déduire sh $(\ln 2)$, sh $(\ln 3)$. Calculer la dérivée de $f(t) = \frac{\sinh t}{\cosh t}$.

Enfin calcular $\int_{0}^{\frac{3}{4}} \frac{dx}{(1+x^2)\sqrt{1+x^2}} et \int_{\frac{3}{2}}^{\frac{4}{3}} \frac{dx}{x^2\sqrt{1+x^2}} en \ posant \ x = \sinh t.$

Exercice 36 Déterminer des primitives de $f(x) = \sin^3 x$, $g(x) = \sin(2x)\cos x$ et de $h(x) = \cos^2 x \sin^4(x)$.

Exercise 37 On definit $I = \int_0^{\frac{\pi}{4}} \left(\frac{\cos x}{\sin x + \cos x} \right)^2 dx$ et $J = \int_0^{\frac{\pi}{4}} \left(\frac{\sin x + \cos x}{\cos x} \right)^2 dx$.

- 1. Calculer J.
- 2. Montrer que $\left(\frac{\sin x + \cos x}{\cos x}\right)^2 = 2 \times \frac{1 + \sin 2x}{1 + \cos 2x}$
- 3. A l'aide du changement de variable $u = \frac{\pi}{4} x$, montrer que J = 4I et en déduire I.

Exercice 38 En vrac, calculer

①
$$\int_{\ln(5)}^{\ln(13)} \frac{e^x}{(3+e^x)\sqrt{e^x-1}} dx, \ t = \frac{1}{2}\sqrt{e^x-1}$$

