DEVOIR SURVEILLÉ n°5 du samedi 21 décembre

Durée : 4 heures de 8h à 12h. Les calculatrices sont interdites. Les copies illisibles ou mal présentées seront pénalisées.

1 Exercices

Exercice 1 (Question de cours) Soit $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Démontrer que si f et g sont injectives alors $g \circ f$ est injective.
- 2. La réciproque est-elle vraie?
- 3. Démontrer que si f et g sont surjectives, alors $g \circ f : E \to G$ est surjective.

Exercice 2 (Questions en vrac)

- 1. On considère l'application f de \mathbb{R}^3 dans \mathbb{R}^2 définie par f(x,y,z)=(2x-y,z). Démontrer que f n'est pas injective mais qu'elle est surjective.
- 2. Donner la décomposition en facteurs irréductibles sur \mathbb{C} et sur \mathbb{R} de $P = X^5 X^4 + 2X 2$.
- 3. Déterminer $P \in \mathbb{R}[X]$ de degré 5 sachant que 1 est racine de P et que i est racine double de P.
- 4. Soit $n \in \mathbb{N}$. Démontrer que $P = (X^{n+1} 1)(X^n 1)$ est divisible par $(X + 1)(X 1)^2$.
- 5. Déterminer une application bijective $f:[0,1] \to [5,7]$.

2 Arithmétique

Exercice 3 (Repunits) On pose $r_1 = 1$, $r_2 = 11$, $r_3 = 111$ et plus généralement pour $n \in \mathbb{N}^*$, on note r_n l'entier dont l'écriture décimale est constitué de n fois le chiffre 1 :

$$r_n = \underbrace{111\dots 1}_{n \text{ chiffres}}.$$

Les nombres r_n sont appelés des «repunits» (répétitions de l'unité).

Soit $n \in \mathbb{N}^*$.

1. Démontrer que 3 divise r_n si et seulement si 3 divise n.

Pour les questions suivantes, on pourra utiliser :

$$r_n = \frac{10^n - 1}{9}.$$

- 2. On prend pour cette question $n \ge 2$. Justifier que 4 divise 10^n . En déduire que r_n n'est pas un carré, c'est-à-dire qu'il n'existe pas d'entier $a \in \mathbb{N}$ tel que $r_n = a^2$.
- 3. Soit $a \in \mathbb{N}^*$ un diviseur de n. Démontrer que r_a divise r_n .
- 4. En déduire que si r_n est un nombre premier, alors n est un nombre premier.
- 5. La réciproque est-elle vraie?

Exercice 4 (Irrationnalité de racine cubique de 2) Le but de l'exercice est de prouver que le nombre $\sqrt[3]{2}$ est irrationnel. On suppose que r est une racine rationnelle du polynôme $P=X^3-2$ que l'on écrit $r=\frac{p}{q}$ avec $p,q\in\mathbb{N}^*$ premiers entre eux.

- 1. Justifier que q divise p^3 . En déduire avec soin que q=1.
- 2. Démontrer que p divise 2.
- 3. En déduire que P n'admet pas de racines rationnelles, puis conclure.

3 PROBLEME : Calcul de $\zeta(2)$ par la méthode de Papadimitriou

On note $(s_n)_n$ la suite définie pour $n \ge 1$ par :

$$s_n = \sum_{k=1}^n \frac{1}{k^2}.$$

On déjà montré plusieurs fois que la suite (s_n) converge. Le but de ce problème est de déterminer sa limite ¹. Dans tout le problème, p désigne un entier fixé avec $p \in \mathbb{N}^*$ et on note P le polynôme de $\mathbb{R}[X]$ défini par :

$$P(X) = \sum_{k=0}^{p} (-1)^k \binom{2p+1}{2k+1} X^{p-k}$$

où $\binom{2p+1}{2k+1}$ désigne le coefficient binomial p+1 parmi 2k+1.

- 1. Donner le degré de P ainsi que son coefficient dominant.
- 2. Une identité trigonométrique
 - (a) Soit $\phi \in \mathbb{R}$. Développer $(\cos \phi + i \sin \phi)^{2p+1}$ puis en déduire avec soin que :

$$\sin((2p+1)\phi) = \sum_{k=0}^{p} (-1)^k \binom{2p+1}{2k+1} \cos^{2p-2k}(\phi) \sin^{2k+1}(\phi).$$

(b) En déduire que pour tout réel $\phi \not\equiv 0[\pi]$, on a

$$\sin((2p+1)\phi) = \sin^{2p+1}(\phi) \sum_{k=0}^{p} (-1)^k \binom{2p+1}{2k+1} (\cot^2 \phi)^{p-k}$$

où
$$\cot \phi = \frac{\cos \phi}{\sin \phi}$$
.

- 3. Racines de P
 - (a) Soit $k \in [1, p]$, on pose $\gamma_k = \cot^2\left(\frac{k\pi}{2p+1}\right)$. Déterminer à l'aide de la question précédente la valeur de $P(\gamma_k)$.
 - (b) Démontrer que les nombres γ_k pour $k \in [1, p]$ sont deux à deux distincts.
 - (c) En déduire que P est scindé sur \mathbb{R} , donner sa décomposition en facteurs irréductibles sur \mathbb{R} .
- 4. Rappeler la formule du cours, reliant la somme des racines d'un polynôme $P = a_n X^n + \cdots + a_0$ aux coefficients de ce polynôme. En déduire que

$$\sum_{k=1}^{p} \operatorname{cotan}^{2} \left(\frac{k\pi}{2p+1} \right) = \frac{p(2p-1)}{3}.$$

5. Déduire de la formule précédente l'égalité suivante

$$\sum_{k=1}^{p} \frac{1}{\sin^2\left(\frac{k\pi}{2p+1}\right)} = \frac{2p(p+1)}{3}.$$

- 6. Encadrement de s_n
 - (a) On admet que pour tout réel $\phi \in]0, \frac{\pi}{2}[$, on a $0 < \sin \phi < \phi < \tan \phi$. En déduire que pour tout $p \geqslant 1$, on a

$$\frac{p(2p-1)}{3} < \frac{(2p+1)^2}{\pi^2} \sum_{k=1}^p \frac{1}{k^2} < \frac{2p(p+1)}{3}.$$

(b) En déduire la valeur de S, la limite de la suite (s_n) .

Fin de l'énoncé

^{1.} Plus généralement, on montre que pour s>1, la suite de terme général $\sum_{k=1}^n \frac{1}{k^s}$ converge et on note $\zeta(s)$ sa limite