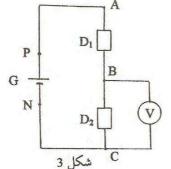
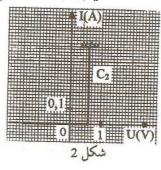
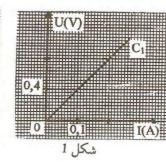
سلسلة مميزات بعض ثنائيات القطب الغير النشيطة



تمرین-1

- 1- ننجز الدارة الكهربائية الممثلة في الشكل جانبه والمكونة من:
- . $r=1\Omega$ فوته الكهرمحركة E=9V ومقاومته الداخلية G
 - . R_2 و $R_1=6\Omega$ و التوالي $R_1=6\Omega$ و مقاومتاهما على التوالي $R_1=6\Omega$
 - امبیر متر A عدد تدریجات مینائه 150.
- 1-1- تشير ابرة الامبيرمتر الى المدريجة 75، احسب شدة التيار الكهربائي المار في الدارة علما ان العيار المستعمل هو 2A . استنتج قيمة التوتر U_{PN} .
 - $D_{2} = D_{1}$ المقاومة المكافئة للموصلين الاومبين المقاومة المكافئة الموصلين الاومبين المقاومة المكافئة الم
 - . D_2 استنتج قيمة المقاومة R_2 الموصل -3-1
- ، $D_z = 4.5N$ بنضيف الى التركيب السابق صماما ثنائيا زينر D_z ، مميزته مؤمثلة وتوتره زينر $D_z = 4.5N$
 - I_{7} مركبا على التوالي مع D_{1} ومستقطبا في المنحى المعاكس احسب شدة التيار الكهربائي


تمرین-2


 C_1 مميزة موصل أومي D_1 و المنحنى C_2 مميزة موصل أومي (1) و المنحنى C_2 مميزة صمام ثنائي C_3

~ **********

01

عين مبيانيا :

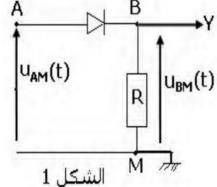
- المقاومة R_1 للموصل الاومي R_2 .
- عتبة التوتر U_s المميزة للصمام الثنائي.
- القيمة القصوية I_{max} لشدة التيار المار في المنحى المباشر للصمام الثنائي .
 - 2-1- بتطبيق قانون بويي (Pouillet) اوجد شدة التيار I المار في الدارة .
- 2-2- بتطبيق قانون اوم اوجد التوتر U_{PN} بين مربطي العمود والتوتر U_{AB} بين مربطي الموصل الاومي D_1 .
 - 2-3- اذا علمت ان ميناء الفولطمتر يحتوي على 100 تدريجة وان ابرته تشير الى التدريجة 67 عند ضبطه على العيار D_2 والارتياب المطلق طبيطه على العيار D_2 والارتياب المطلق المقرون بقياس هذا التوتر .
- 3- نزيل الفولطمتر ونعوضه بالصمام الثنائي (D) مركب في المنحى المباشر. اوجد في هذه الحالة شدة التيار الرئيسي I_1 والشدة I_2 للتيار الكهربائي المار في I_2 والشدة I_3 التيار المار في I_4).

تمرین3

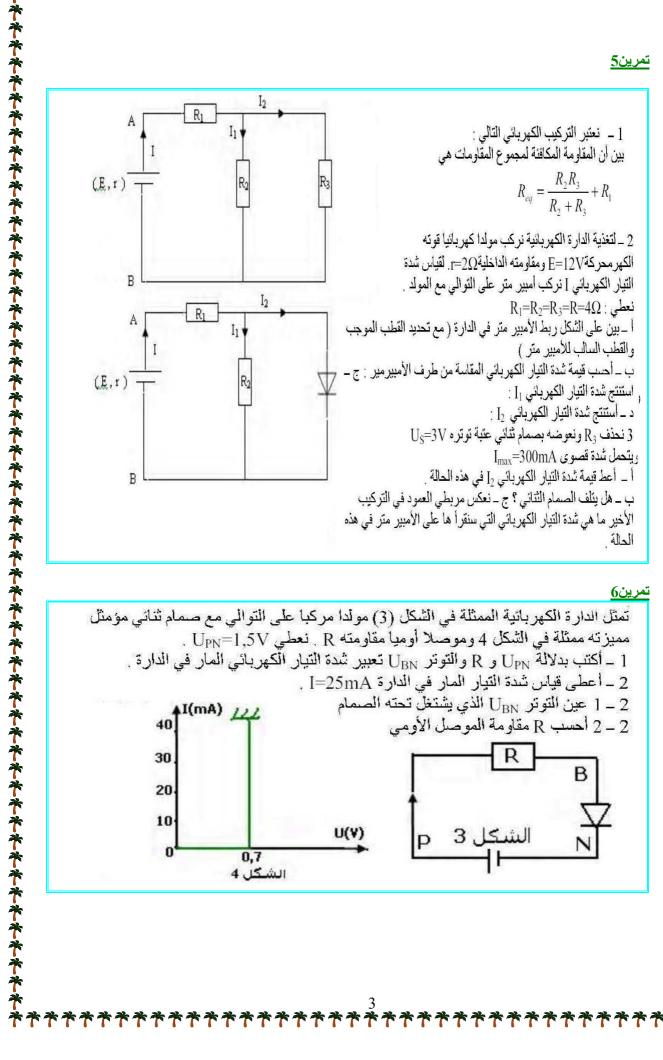
- يتكون التركيب الممثل في الشكل التالي من:
- صمام ثنائي زينر (D_z) حيث $(U_z = 8V, U_S = 0, 6V)$ مميزته مؤمثلة.
 - . $R_2 = 200\Omega$ مقاومته (D_2) و (D_1) مقاومته الميان أوميان مقاومته الميان الميان
 - جهازي امبير متر وفولطمتر ، وقاطع التيار الكهربائي K.

- I=0,1A عند اغلاق الدارة يشير الأمبير متر الى شدة تيار I=0,1A
- $e = 1,6.10^{-19} C$: احسب عدد الالكترونات N التي تعبر مقطع الدارة خلال ثانية . نعطى N التي تعبر مقطع الدارة خلال ثانية

- $n_0 = 100$ علم الأمبير متر على العيار C = 0.5A ، علما ان عدد تدريجات مينائه هو $n_0 = 100$ حدد التدريجة $n_0 = 100$ التدريجة $n_0 = 100$ التدريجة $n_0 = 100$
 - 1-3 فئة الأمبير متر هي X=2، احسب الارتياب المطلق ثم الارتياب النسبي المتعلق بشدة التيار.
 - 2- عندما يكون قاطع التيار K مفتوحا يشير الفولطمتر الى القيمة $U_I=9V$ ، وعندما نغلقه يشير الفولطمتر الى القيمة $U_2=8.8V$.
 - (G) القوة الكهر محركة E للمولد E
 - . r المقاومة الداخلية المولد (G) بدلالة U_0 و U_1 المسب -2-2
 - 3- باعتمادك على المعطيات الواردة اعلاه:
 - 1-3- وضح متى يكون الصمام الثنائي زينر موصلا للتيار ومتى يكون حاجزا له.
 - علما ان الصمام الثنائي زينر يمر فيه تيار كهربائي. P_1 علما ان الصمام الثنائي زينر يمر فيه تيار كهربائي.
- 3-3- استنتج كلا من I_2 شدة التيار المار في الموصل الأومي D_2 و D_2 شدة التيار المار في الصمام الثنائي.


تمرین4

ننجز التركيب التالي (الشكل 1) علما أن التوتر المطبق بين A و Y متناوب جيبي قيمته القصوية 3V وتردده 50Hz .


1 ـ مثل على ورق مليمتري وباختيار سلم ملائم (السوتر المطبق التوتر المطبق من طرف المولد .

اللحظى المطبق من طرف المولد .

 $u_{BM}(t)$ على نفس الورقة المليمترية وبلون مغاير ، التوتر $u_{BM}(t)$ سن مربطي الموصل الأومي .

تمرین5

تمرین6

تمثّل الدارة الكهربائية الممثلة في الشكل (3) مولدا مركبا على التوالي مع صمام ثنائي مؤمثل . U_{PN} =1,5V نعطي R مميزته ممثلة في الشكل 4 وموصلا أومياً مقاومته Rا و $U_{\rm BN}$ و $U_{\rm BN}$ و التوتر $U_{\rm BN}$ تعبير شدة التيار الْكهربائي المار في الدارة $U_{\rm BN}$ 2 _ أعطى قياس شدة التيار المار في الدارة I=25mA . الذي يشتغل تحته الصمام U_{BN} عين التوتر 2 - 2 أحسب R مقاومة الموصل الأومى

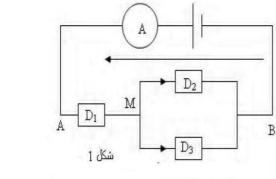
الشكل 3

تمرین7

اتناء الدر اسة التجريبية لمميزة مقاومة متغيرة مع التوتر VDR

حصلنا على النتائج التالية:

I(mA)	0	1	1,5	3	6	14	27	45	68
U(V)	0	80	100	120	140	160	180	200	220


الشكل 2

1 ـ أعط التمثيل المبياني للميزة U=f(I) للمقاومة المتغيرة مع التوتر باختيار سلم مناس 2 ـ نركب مع الفاريستنس VDR موصل أومي AB كما هو مبين في الشكل (2) يكون التوتر بين مربطى الموصل الأومى UAB=100V عندما يمر تيار كهربائي شدته

 $_{1}$ عين شدة التيار الكهربائي $_{1}$ التي تمر في الفاريستنس

عندما يكون التوتر $\mathrm{U_{MN}}{=}100\mathrm{V}$ ، ثم $\mathrm{U_{MN}}{=}200\mathrm{V}$. ماذا تستنتج 2 - 2 قارن الخارج

تمرین8

B $u_{\mathbf{z}}(V)$ **↑** I(A) 6 U(V) t (ms) -5 0 1 2.5 الشكل 2 الشكل 3 G Ug K D

الشكل 4

- 1 _ يتكون التركيب الممثل في الشكل 1 من : _ مولد كهربائي قوته الكهر محركة E=6V ومقاومته الداخلية r ـ ثلاث موصلات أومية D₁ و D₂ و D₃ مقاومتها على الترتيب $R_1 = 10\Omega$, $R_2 = 80\Omega$, $R_3 = 120\Omega$
 - أمبير متر عدد تدريجات مينائه 100 مضبوط على العيار 0.5A. يشير الأمبير متر إلى مرور تيار كهربائي شدته I=0.1A .
 - 1.1 ـ ما التدريجة التي تستقر عندها إبرة الأمبير متر؟
 - 1.2 _ احسب المقاومة R الثنائي القطب المكافئ للموصلات الأومية
 - المولد, $_{\rm T}$ المواد $_{\rm T}$ المواد $_{\rm T}$ المواد $_{\rm T}$ المولد $_{\rm T}$
 - D_3 و D_2 ما شدة التيار المار في كل من الموصلين الأوميين D_2 و D_3
 - الشكل D_z مميزته المؤمثلة أنظر الشكل D_z معتبر صماما ثنائي زينر
 - ستنتج مبيانيا U_z وتوتر زينر U_z واستنتج مبيانيا U_s قيمتهما
 - 2.2 _ يطبق مولد كهربائي G نوترا مثلثيا ،U بين مربطي الصمام الثنائي زينر
 - تم تركيبه ريزستور وقائي D.
 - يمتل منحنى الشكل 3 تغيرات التوتر ug بدلالة الزمن .
 - أ ـ حدد مبيانيا كلا من الدور T للتوتر u_{g} والقيمة القصوية لهذا التوتر