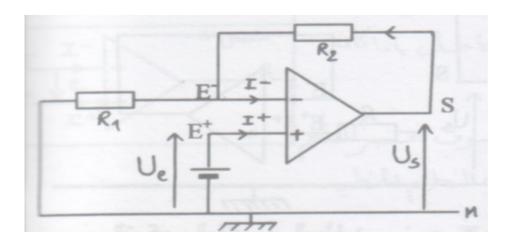

تمارين المضخم العملياتي

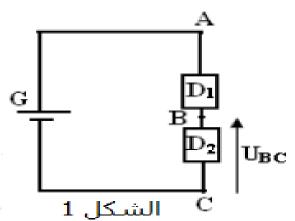
تمرين 1:


نعتبر التركيب الممثل جانبه والمتكون من:

- 💠 مظخم عملیاتي کامل .
- . r=10 Ω ومقاوته الداخلية ϵ عمود قوته الكهرمحركة ϵ
 - ❖ موصِل أومي مقاومته R₁=500Ω .
 - 1- أثبت أن: U_S=E ماذا يسمى هذا النوع من التركيب ؟
 - . R_1 أحسب شدة التيار I_1 المار في R_1

: 2 تمرين

- ركب على $r=10\Omega$ قوته الكهرمحركة E=4,5V ومقاومته الداخلية G نركب على التوالي مولدين :
 - . r_1 =6 Ω قوته الكهرمحركة E_1 =3V ومقاومته الداخلية G_1
 - . r_2 قوته الكهرمحركة E_2 ومقاومته الداخلية $G_2 \diamondsuit$ حدد قيمتي E_2 و E_2
 - 2- ننجز التركيب الإلكتروني المبين في الشكل أسفله والمتكون من:
 - ❖ المولد السابق.
 - . R $_2$ =1600 Ω و R $_1$ =800 Ω : موصلين أوميين مقاومتهما على التوالي \star
 - 💠 مضخم عملياتي كامل يشتغل في النظام الخطي .
 - ❖ قاطع التيار .

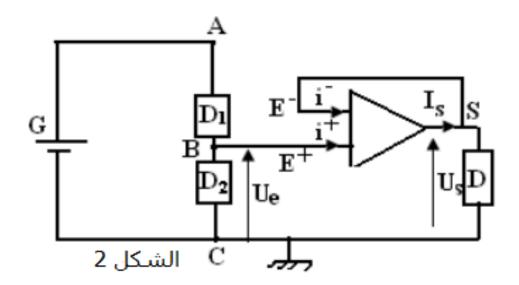


- 2.1- ذكر بخاصيات بمضخم عملياتي يشتغل في النظام الخطي .
 - 2.2- استنتج أن توتر الدخول يساوي Ue=E .
 - . E و R_2 و R_1 بدلالة R_1 و R_2 و 2.3
 - . أذا تمثل النسبة $\frac{\overline{U_S}}{U_e}$ ، أحسب قيمتها -2.4
- 2.5- حدد ، معللا جوابك ، وظيفة المظخم العملياتي في هذا التركيب .

تمرین 3:

-1.2

- 1- تتكون الدارة الكهربائية الممثلة في الشكل (1) ، من :
- ❖ مولد G قوته الكهرمحركة E=12V ومقاومته الداخلية مهملة .
- . R $_2=1$ k Ω و D $_2=0$ موصلين أوميين D_1 و D $_2=0$ مقاومتهما على التواي
- . R_2 اعط تعبير الشدة I للتيا الكهربائي المار في الدارة بدلالة E و R_1 التيا



: يكتب على الشكل التالي، U_{BC} بين أن تعبير -1.3

$$U_{BC} = \frac{R_2}{R_1 + R_2} E$$

. U_{BC} أحسب

2- نضيف إلى التركيب الكهربائي السابق ، مضخم عملياتي كاملا يشتغل في النظام الخطي ، أنظر الشكل 2.

- 2.1- ذكر بالخاصيتين الاساسيتين لمضخم عملياتي كامل.
- 2.2- بِين أن قيمة توتر الدخول ولهي نفس القيمة السابقة للتوتر _{BC}افي السؤال 1.2.
 - 2.3- أوجد العلاقة بين علاو على مااسم هذا التركيب ؟
- 2.4- حُدد قيمة R ، مُقاومة الموصل الأومي D ، علما أن شدة تيار الخروج هي I_S=10mA .