

الامتدان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2016 - الموضوع -

RS 22

المركز الوطني للتقويم والامتحانات والتوجيه

$\left\ \left(\right. \right\ $	3	مدة الإنجاز	الرياضيات	المادة
	7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعبة أو المسلك

تعليمات عامة

- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؟
 - يسمح باستعمال آلآلة الحاسبة غير القابلة للبرمجة ؛
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغى تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه و لا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من أربعة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلى:

3 نقط	المتتاليات العددية	التمرين الأول
3 نقط	الهندسة الفضائية	التمرين الثاني
3 نقط	الأعداد العقدية	التمرين الثالث
3 نقط	حساب الاحتمالات	التمرين الرابع
8 نقط	دراسة دالة عددية وحساب التكامل	مسألة

- بالنسبة للمسألة ، ln يرمز لدالة اللوغاريتم النبيري.

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الأول: (3ن)

0.5

0.5

1

0.75

0.5

0.75

$$I\!N$$
 نعتبر المتتالية العددية $u_{n+1}=rac{1}{16}\,u_n+rac{15}{16}\,$ و $u_0=2$: المعرفة بما يلي المعرفة بما يلي :

$$IN$$
 من $u_n > 1$ لكل من n من n

. بـ تحقق من أن
$$(u_n)$$
 تناقصية $u_{n+1}-u_n=-rac{15}{16}(u_n-1)$ بـ تحقق من أن المتتالية

جـ استنتج أن المتتالية
$$(u_n)$$
 متقاربة.

$$I\!N$$
 من n لكن $v_n=u_n-1$ المتتالية العددية بحيث (2

$$n$$
 اـ بين أن (v_n) متتالية هندسية أساسها اله و اكتب اله بدلالة ا

$$(u_n)$$
 بين أن $u_n = 1 + \left(\frac{1}{16}\right)^n$ بين أن $u_n = 1 + \left(\frac{1}{16}\right)^n$ بين أن

التمرين الثانى: (3ن)

B(0,1,2) و A(1,3,4) النقطتين ($(0,\vec{i},\vec{j},\vec{k})$ و وتعامد ممنظم مباشر النقطتين ((0,1,3,4) و الفضاء المنسوب إلى معلم متعامد ممنظم مباشر

$$\overrightarrow{OA} \wedge \overrightarrow{OB} = 2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$
 أ- بين أن (1 | 0.5

.
$$(OAB)$$
 بـ بين أن $2x-2y+z=0$ هي معادلة ديكارتية للمستوى

$$x^2 + y^2 + z^2 - 6x + 6y - 6z + 2 = 0$$
 التي معادلتها (S) التي الفلكة (S) التي معادلتها (S) التي أن مركز الفلكة (S) هو النقطة (S) هو النقطة (S) و شعاعها (S)

$$(S)$$
 أ- بين أن المستوى (OAB) مماس للفلكة (S)

$$(S)$$
 و الفلكة (OAB) بـ حدد مثلوث إحداثيات H نقطة تماس المستوى

التمرين الثالث: (3ن)

$$z^2 - 8z + 41 = 0$$
: المعادلة (العقدية مجموعة الأعداد العقدية مجموعة مج

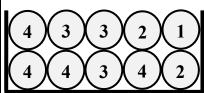
نعتبر ، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم
$$O(0,\vec{u},\vec{v})$$
 ،النقط $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ التي ألحاقها $O(0,\vec{u},\vec{v})$ على التوالي هي $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ على التوالي هي $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ على التوالي هي $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ على التوالي هي $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$ و $O(0,\vec{u},\vec{v})$

و استنتج أن النقط
$$A$$
 و B و $a-b$ و استنتج أن النقط $a-b$

$$-\frac{\pi}{2}$$
ب- ليكن z لحق نقطة M من المستوى و z' لحق النقطة M صورة M بالدوران z' الذي مركزه $z'=-i\,z-3+11\,i$ بين أن

$$\frac{a-\omega}{c-\omega}$$
 جـ حدد صورة النقطة C بالدوران R ثم أعط شكلا مثلثيا للعدد 0.75

الصفحة	
73	RS


الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - الموضوع

- مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الرابع: (3ن)

يحتوي صندوق على $\overline{0}$ كرات تحمل الأعداد : 1 و 2 و 2 و 3 و 3 و 3 و 4 و 4 و 4 و 4 و 4

(لا يمكن التمييز بين الكرات باللمس).

22

نُعتبر التجربة التالية: نسحب عشوائيا بالتتابع وبدون إحلال كرتين من الصندوق. A ليكن A الحدث: " الحصول على كرتين تحملان عددين زوجيين ".

 $p(A) = \frac{1}{3}$: بين أن

(2) نكرر التجربة السابقة ثلاث مرات بحيث نعيد الكرتين المسحوبتين إلى الصندوق بعد كل تجربة لليكن (2) المتغير العشوائي الذي يساوي عدد المرات التي يتحقق فيها الحدث (3)

$$X$$
 بين أن $p(X=1)=rac{4}{9}$ بين أن $p(X=1)=rac{4}{9}$

مسألة : (8 ن)

1

 $]0,+\infty[$ على g على الجدول جانبه هو جدول تغيرات الدالة

g(1) احسب (1 0.25

$$\begin{array}{c|cccc}
x & 0 & 1 & +\infty \\
g'(x) & - & 0 & + \\
\hline
g(x) & +\infty & +\infty \\
g(1) & & & & & \\
\end{array}$$

$$]0,+\infty[$$
 ككل $g(x)>0$ استنتج انطلاقا من الجدول أن ($g(x)>0$ ككل من) 0.75

 $f(x)=3-3x+2(x+1)\ln x$: بما يلي : $0,+\infty$ [بما يلي : f المعرفة على] بالمعرفة على] بالمعرفة على] بالمعرفة على] بالمعرفة f المنحنى الممثل للدالة f في معلم متعامد ممنظم f الوحدة : f الوحدة : f المنحنى المعرف المع

بين أن $f(x) = -\infty$ و أعط تأويلا هندسيا لهذه النتيجة . $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$

 $(f(x) = x \left[\frac{3}{x} - 3 + 2 \left(1 + \frac{1}{x} \right) \ln x \right]$ على الشكل f(x) على الشكل $\int_{x \to +\infty} f(x) = +\infty$ المناف والمناف وال

 $+\infty$ بين أن المنحنى (C) يقبل فرعا شلجميا في اتجاه محور الأراتيب بجوار (C)

 $]0,+\infty[$ نکل x ککل f'(x)=g(x) نکل آب بین أن $[0,+\infty]$

 $]0,+\infty[$ على $]0,+\infty[$ على الدالة f تزايدية قطعا على $]0,+\infty[$ ثم ضع جدول تغيرات الدالة f على $]0,+\infty[$

(C) نقطة انعطاف للمنحنى I(1,0) نقطة انعطاف المنحنى ($4 \mid 0.5$

I في النقطة (C) مماس المنحنى y=x-1 في النقطة y=x-1 بين أن

(C) و المنحنى (T) المستقيم و المنحنى ((O,\vec{i},\vec{j})) المستقيم (T)

$$\int_{1}^{2} \left(1 + \frac{x}{2}\right) dx = \frac{7}{4}$$
 أ- بين أن (5) 0.5

 $\int_{1}^{2} (x+1) \ln x \, dx = 4 \ln 2 - \frac{7}{4}$ بين أن بالأجزاء ، بين أن مكاملة بالأجزاء ، و 0.75

ج- احسب ، ب cm^2 ، مساحة حيز المستوى المحصور بين المنحنى (C) و محور الأفاصيل و المستقيمين x=2 و x=1 اللذين معادلتاهما x=2 و x=1

 $x \in]0,+\infty[$; $(x+1)\ln x \ge \frac{3}{2}(x-1)$: مبيانيا المتراجحة (6 0.5