المحور الثالث: تحولات المادة الوحدة 9

(التفاعلات (الديميائية

الجذع المشترك الفيزياء جميع الشعب

$\frac{1}{2}$ الصفحة:

ذ. هشام محجر

Les Réactions chimiques

- * أثناء تحول كيميائي ما ، تظهر أنواع كيميائية جديدة تسمى نواتج ، في حين تختفي أنواع كيميائية أخرى تسمى متفاعلات ، وذلك عند توفر ظروف معينة .
 - * التحول الكيميائي هو مرور المجموعة الكيميائية من الحالة البدئية إلى الحالة النهائية.
- * التفاعل الكيميائي هو نموذج وصفي للتحول الكيميائي ، ويتم التعبير عنه بكتابة رمزية تسمى المعادلة الكيميائية .
- * خلال التفاعل الكيميائي تنحفظ العناصر الكيميائية نوعا وعددا (انحفاظ الكتلة) وتنحفظ الشحنة الكهربائية الإجمالية . ويعبر عن هذا الانحفاظ بموازنة المعادلة الكيميائية من خلال إضافة أعداد صحيحة تسمى المعاملات التناسبية .
- χ أثناء تحول ، تتناسب تغيرات كميات المادة للمتفاعلات والنواتج مع مقدار يسمى تقدم التفاعل ونرمز له بالحرف χ ونعبر عنه بالوحدة mol . ثابتة التناسب هي معامل التناسب للمتفاعل أو النواتج .
- ب لنتبع تطور كميات المادة للأنواع الكيميائية المتفاعلة و الناتجة ، نقوم بإنشاء جدول وصفي خاص بالتفاعل ، حيث يتم تحديد كمية المادة لكل نوع كيميائي بدلالة تقدم التفاعل χ .
 - \star تصل المجموعة الكيميائية إلى حالتها النهائية بانقضاء كمية المادة لأحد المتفاعلات على الأقل ، ويسمى هذا المتفاعل المحد . ويأخذ تقدم التفاعل $_{\rm X}$ قيمته القصوى التي تسمى التقدم الأقصى $_{\rm X}$.

α Α	+	βΒ	\rightarrow	γС	+	δD	معادلة التفاعل		
كميات المادة (mol)							تقدم التفاعل	حالة المجموعة	
$n_i(A)$	$n_i(B)$			0		0	0	الحالة البدئية	
$n_i(A) - \alpha x$	$n_i(B) - \beta x$			γx		δx	X	خلال التحول	
$n_i(A) - \alpha x_{max}$	$n_i(B$	$(\beta) - \beta x_{max}$	1	γx_{max}		δx_{max}	x_{max}	الحالة النهائية	

* تمكن معرفة التقدم الأقصى من تحديد كميات المادة لكل المتفاعلات والنواتج في الحالة النهائية = حصيلة المادة . * يكون الخليط استوكيومتريا إذا كانت كميات المادة البدئية للمتفاعلات متوفرة حسب المعاملات التناسبية للمتفاعلات في المعادلة فتختفي المتفاعلات كليا في الحالة النهائية .

تمرین 1:

ندخل سلكا من حديد Fe متوهج (درجة الحرارة Cl_2) في قارورة مملوءة بغاز ثنائي الكلور 100° تحت ضغط 1 atm ، فنلاحظ تكون دخان أشقر اللون لكلورور الحديد $FeCl_3$ III عند نهاية التحول نلاحظ أن الحديد لم يتفاعل كليا .

- 1- عين المجموعة الكيميائية في الحالة البدئية والنهائية.
 - 2- حدد الأنواع الكيميائية المتفاعلة والناتجة.
 - 3- مثل هذا التحول الكيميائي محددا المتفاعل الأوفر.

تمرین 2:

وازن المعادلات الكيميائية التفاعلات التالية:

$$P_{(s)} + O_{2(g)} \rightarrow P_2O_{5(s)}$$

$$H_{2(q)} + O_{2(q)} \rightarrow H_2O_{(l)} -2$$

$$CuO_{(s)} + C_{(s)} \rightarrow Cu_{(s)} + CO_{2(g)}^{2}$$
 -3

$$Cu_{(aq)}^{2+} + Al_{(s)} \rightarrow Cu_{(s)} + Al_{(aq)}^{3+}$$
 -4

 $Al_{(aq)}^{3+} + NO_{3(aq)}^{-}
ightarrow Al(NO_3)_{3(s)}$ -5 $Al_{(aq)}^{3+} + SO_{4(aq)}^{2-}
ightarrow Al_2(SO_4)_{3(s)}$ -6 $Fe_3O_{4(s)} + CO_{(g)}
ightarrow Fe_{(s)} + CO_{2(g)}$ -7 $H_2S_{(g)} + SO_{2(g)}
ightarrow H_2O_{(l)} + S_{(s)}$ -8 $Na_2O_2 + H_2O_{(l)}
ightarrow Na_{(aq)}^+ + HO_{(aq)}^- + O_{2(g)}$ -9

اكتب المعادلات الكيميائية للتفاعلات التالية ثم وازنها: C_2H_6 في ثنائي C_2H_6 في ثنائي الأوكسجين ينتج عنه ثنائي أوكسيد الكربون والماء . C_1 أثناء التركيب الضوئي تمتص النباتات ثنائي أوكسيد الكربون والماء لتنتج ثنائي الأوكسجين والغليكوز $C_6H_{12}O_6$.

 3^{-12} - نضع صفيحة من الحديد في محلول لأيونات النحاس Cu^{2+} II فنلاحظ توضع راسب أحمر لفلز النحاس وتكون أيونات الحديد Fe^{2+} .

التفاعلات الكيميائية

Les Réactions chimiques

الجذع المشترك الفيزياء جميع الشعب

 $\frac{2}{1}$ الصفحة:

هشام محج

المحور الثالث:

تحولات المادة

الوحدة 9

 $V_M = 24 L.mol^{-1}$: انعطي $M(H_2O) = 18 g. mol^{-1}$

1- حدد الحالة البدئية للمجموعة الكيميائية.

2- نفتح الإناء ونقرب منه لهبا فيحترق الميثان في الأوكسجين وينتج عنه ثنائي أوكسيد الكربون والماع

1-2 - اكتب معادلة التفاعل وأنشئ الجدول الوصفى .

2-2- حدد المتفاعل المحد وقيمة التقدم الأقصى.

2-2- اعط حصيلة المادة في الحالة النهائية.

3- احسب حجم الغاز المتكون.

4- احسب كتلة الماء المتكون

تمرین 8:

↑ n(mol) بمثل المبيان جانبه 18 \\\ \(\begin{array}{c} \mathcal{HO}^-_{(aq)} \end{array} \] منحنيات تطور كميات 15-المادة للأنواع 12 $H_2O_{(l)}$ الكيميائية خلال تحول 10- $CS_{3(aq)}^{2-}$ كيميائي . $CO_{3(aq)}^{2-}$ كمبة المادة البدئبة اللماء (المذيب) لم يتم 3 4 x(mol) اعتمادها في المبيان .

1- حدد المتفاعلات والنواتج لهذا التحول.

2- عين كميات المادة البدئية للمتفاعلات

3- حدد قيمة التقدم الأقصى والمتفاعل المحد.

4- اعط حصيلة المادة في الحالة النهائية

تمرین 9:

نخلط حجماً \overline{ML} من محلول كلورور نخلط حجماً الكالسيوم من محلول ونفس الحجم من محلول $Ca^{2+}_{(aq)} + 2Cl^-_{(aq)}$ نترات الفضة م $Ag^+_{(aq)} + NO_3^-_{(aq)}$. للمحلولين نفس . $C=10^{-2} mol/L$ التركيز المولى للمذاب المضاف

 $Cl_{(aq)}^-$ يحدث تفاعل ترسيب بين الأيونات $Ag_{(aq)}^+$ و حيث يتكون راسب لكلورور الفضة

1- اكتب معادلة التفاعل المقرون بالترسيب

2- أنجز الجدول الوصفي لتفاعل الترسيب.

3- ما هي كمية مادة الراسب المتكون في الحالة النهائية.

4- حدد قيم التراكيز المولية الفعلية للأيونات المتواجدة في المحلول في الحالة النهائية . تمرین 4:

ننجز احتراق قطعة من الكربون كتلتها m=0,96 في حجم V=120~L من ثنائي الأوكسجين فينتج عنه غاز يعكر ماء الجير نعطي

 $V_M = 24 \ L.mol^{-1} \ g/mol$ 1 - حدد كميتى مادة ثنائى الأوكسجين والكربون الموجودة في الحالة البدئية .

2- اكتب معادلة التفاعل وأنشئ الجدول الوصفى .

3- حدد المتفاعل المحد وقيمة التقدم الأقصى .

4- استنتج كمية مادة الكربون المتبقية و ثنائى أوكسيد

الكربون المتكون

تمرین 5:

تتفاعل 0,03 mol من ثنائي الهيدروجين و 0,01 mol من ثثائي الأوكسجين فينتج عنهما الماء تحت $T=25^{\circ}C$ فعند درجة الحرارة $P=1\ bar$ 1- اكتب معادلة التفاعل ووازنها .

2- باعتبار x تقدم التفاعل يساوي كمية مادة ثنائي الأوكسجين التي تختفي .

2-1- أنشئ الجدول الوصفي .

2-2- حدد المتفاعل المحد وقيمة التقدم الأقصى .

2-2- اعط حصيلة المادة في الحالة النهائية.

تمرین 6:

ننجز ُ الاحتراق الكامل لحجم V=48,0 من غاز البوتان C_4H_{10} عند درجة حرارة T وضغط P باستعمال حجم V'=120~L من غاز ثنائي الأوكسجين عند نفس درجة الحرارة والضغط

 $V_M=24\ L.mol^{-1}$: نعطی

1- حدد كميتي مادة كل من المتفاعلين في الحالة البدئية .

2- اكتب معادلة التفاعل وأنشئ الجدول الوصفى .

3- حدد المتفاعل المحد وقيمة التقدم الأقصى.

4- اعط حصيلة المادة في الحالة النهائية .

5- حدد كمية مادة ثنائي الأوكسجين اللازمة لخليط تناسبي.

ننجز في إناء ، الاحتراق الكامل لـ 0,004 mol من غاز الميثان CH_4 و $0,036\ mol$ من الهواء عند درجة $_{\cdot}$ رارة $T=20^{\circ}C$ وتحت $T=20^{\circ}$

2 ذ هشام محجر