تصحيح الامتحان الوطني 2021 الدورة الاستدراكية علوم الحياة والارض

www.svt-asslah.com

الكيمياء (7نقط)

الجزء 1 : التتبع الزمني لتحول كيميائي

1- المزدوجة المتدخلة في التفاعل :

$$MnO_{4 (aq)}^{-}/Mn_{(aq)}^{2+}$$

2-حساب كمنات المادة:

$$\begin{split} &n_1\big(\text{MnO}_{4\,(\text{aq})}^-\big) = \text{C}_1.\,\text{V}_1 \implies n_1\big(\text{MnO}_{4\,(\text{aq})}^-\big) = 5.10^{-3} \times 40.10^{-3} \Leftrightarrow \boxed{n_1\big(\text{MnO}_{4\,(\text{aq})}^-\big) = 2.10^{-4} \text{ mol}} \\ &n_2\big(\text{H}_2\text{C}_2\text{O}_{4\,(\text{aq})}\big) = \text{C}_2.\,\text{V}_2 \implies n_2\big(\text{H}_2\text{C}_2\text{O}_{4\,(\text{aq})}\big) = 5.10^{-2} \times 60.10^{-3} \Leftrightarrow \boxed{n_2\big(\text{H}_2\text{C}_2\text{O}_{4\,(\text{aq})}\big) = 3.10^{-3} \text{ mol}} \end{split}$$

3-الجدول الوصفي:

معادلة التفاعل		$2MnO_{4(aq)}^{-} + 5H_2C_2O_{4(aq)} + 6H_3O_{(aq)}^{+} \rightarrow 2Mn_{(aq)}^{2+} + 10CO_{2(g)} + H_2O_{(\ell)}$								
حالة المجموعة	التقدم	كميات المادة ب (mol)								
الحالة البدنية	0	2.10-4	3.10-3	بوفرة	0	0	بوفرة			
الحالة الوسيطية	х	$2.10^{-4} - 2x$	$3.10^{-3} - 5x$	بوفرة	2x	5x	بوفرة			
الحالة النهانية	x_{max}	$2.10^{-4} - 2x_{max}$	$3.10^{-3} - 5x_{max}$	بوفرة	2x _{max}	5xm	بوفرة			

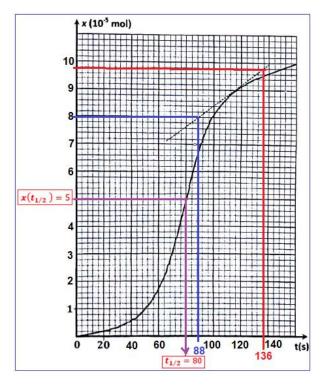
4-قيمة التقدم الأقصى:

نعتبر ان $\operatorname{MnO}_{4\,(aq)}^{-}$ هو المتفاعل المحد نكتب:

$$2.10^{-4} - 2x_{\text{max1}} = 0 \implies 2x_{\text{max1}} = 2.10^{-4} \implies x_{\text{max1}} = \frac{2.10^{-4}}{2} = 10^{-4} \text{ mol}$$

نعتبر أن $H_2C_2O_4$ هو المتفاعل المحد نكتب:

$$3.10^{-3} - 5x_{\text{max}2} \implies 5x_{\text{max}2} = 3.10^{-3} \implies x_{\text{max}2} = \frac{3.10^{-3}}{5} = 6.10^{-4} \text{ mol}$$


. Mn 0_4^- والمتفاعل المحد هو $x_{max} = 10^{-4} \; mol$ والمتفاعل المحد هو $x_{max} = 10^{-4} \; mol$

5-التحديد المبياني ل:

5-أ-السرعة الحجمية:

حسب تعريف السرعة الحجمية:

$$V = \frac{1}{V} \frac{dx}{dt}$$

$$V = \frac{1}{V} \left(\frac{\Delta x}{\Delta t} \right)_{t=116s} = \frac{1}{100.10^{-3}} \times \left[\frac{(9.8 - 8).10^{-5}}{136 - 88} \right]$$

 $V = 3,75.10^{-6} \text{ mol. L}^{-1}.\text{ s}^{-1}$

5-ب-قيمة زمن نصف التفاعل:

عند اللحظة $t=t_{1/2}$ لدينا:

$$x(t_{1/2}) = \frac{x_{max}}{2} = \frac{10^{-4}}{2} = 5.10^{-5} \text{ mol}$$

$$t_{1/2} = 80 \text{ s}$$
 نجد: $x = f(t)$ حسب المبيان

الجزء 2 : استعمال حمض الأوكساليك

1-دراسة المحلول المائى لحمض الأوساليك

1.1-معادلة تفاعل حمض الأوكساليك والماء:

$$H_2C_2H_{4 (aq)} + H_2O_{(l)} \rightleftharpoons HC_2O_{4 (aq)}^- + H_3O_{(aq)}^+$$

1.2-نسبة التقدم النهائي:

الجدول الوصفي:

معادلة التفاعل		$H_2C_2O_{4(aq)}$	$+ H_2O_0$)	$HC_2O_{4(aq)}^-$ -	$+ H_3O^+_{(aq)}$		
حالة المجموعة	التقدم	كميات المادة ب (mol)						
الحالة البدنية	0	C.V	بوفرة		0	0		
الحالة الوسيطية	x	C.V-x	پوفرة		x	x		
الحالة النهانية	x_{6q}	$C.V - x_{\theta q}$	بوفرة		x_{6q}	x_{6q}		

حمض الأوكساليك متفاعل محد لأن الماء مستعمل بوفرة نكتب:

$$C.V - x_{max} = 0 \implies x_{max} = C.V$$

حسب الجدول الوصفي:

$$[H_{3}O^{+}]_{\acute{e}q} = \frac{x_{\acute{e}q}}{V} = 10^{-pH} \implies x_{\acute{e}q} = V. \ [H_{3}O^{+}] = 10^{-pH}.V$$

$$\tau = \frac{x_{\acute{e}q}}{x_{max}} = \frac{10^{-pH}.V}{C.V} = \frac{10^{-pH}}{C}$$

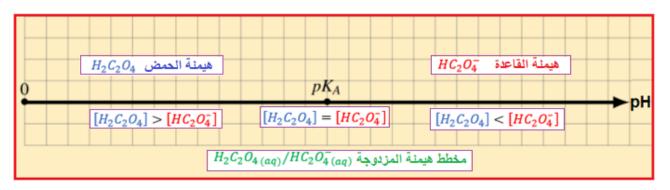
$$\tau = \frac{10^{-1.34}}{0.1} \Leftrightarrow \boxed{\tau \approx 0.46} \iff \tau \approx 46\%$$

إذن التحول محدود. $\tau < 1$

1.3-قيمة خارج التفاعل عند التوازن:

$$Q_{r,\text{\'eq}} = \frac{[HC_2O_4^-]_{\acute{eq}}.[H_3O^+]_{\acute{eq}}}{[H_2C_2O_4]_{\acute{eq}}}$$

$$[\mathrm{HC_2O_4^-}]_{\mathrm{\acute{e}q}} = [\mathrm{H_3O^+}]_{\mathrm{\acute{e}q}} = rac{\mathrm{x_{\acute{e}q}}}{\mathrm{V}} = 10^{-\mathrm{pH}}$$
 حسب الجدول الوصفي:


$$[H_2C_2O_4]_{\acute{e}q} = \frac{C.V - x_{\acute{e}q}}{V} = C - \frac{x_{\acute{e}q}}{V} = C - 10^{-pH}$$

$$Q_{r,\text{\'eq}} = \frac{10^{-2\times1,34}}{0,1-10^{-1,34}} \Longleftrightarrow \boxed{ \frac{Q_{r,\text{\'eq}} = 3,85.10^{-2}}{} }$$

: pK_A قيمة

$$\begin{aligned} p K_{A} &= -log K_{A} \\ K_{A} &= Q_{r,\acute{e}q} = 3,84.10^{-2} \\ p K_{A} &= -log(3,85.10^{-2}) \Leftrightarrow \boxed{p K_{A} \approx 1,41} \end{aligned}$$

1.5-مخطط الهيمنة:

-2

2.1-معادلة تفاعل المعايرة:

$$H_{2}C_{2}H_{4\,(aq)}+HO_{(aq)}^{-}\to HC_{2}O_{4\,(aq)}^{-}+H_{2}O_{(l)}$$

: C_A قيمة التركيز -2.2

علاقة التكافؤ:

$$C_A. V_A = C_B. V_{B,E} \implies C_A = \frac{C_B. V_{B,E}}{V_A}$$

$$C_{A} = \frac{0.5 \times 38.5}{50} \Leftrightarrow \boxed{C_{A} = 0.385 \text{ mol. L}^{-1}}$$

2.3-التحقق:

حساب التركيز الكتلي C_{m} لحمض الأوكساليك:

$$C_{\rm m} = C. M(H_2C_2H_4)$$

$$C_{\rm m} = 0.385 \text{ mol. } L^{-1} \times 90 \text{ g. mol}^{-1} \Leftrightarrow \boxed{C_{\rm m} \approx 34.6 \text{ g. L}^{-1}}$$

التركيز الكتلي لحمض الأوكساليك $\frac{C_{\rm m}}{\sim} \approx 34,6~{\rm g.~L^{-1}}$ لا يتجاوز القيمة نعم النحال يحترم (AEM) .

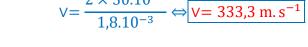
الفيزياء (13نقط)

1. خاصيات الموجات

- A خطأ
- B خطأ
- C خطأ
- D خطأ

2-الموجات فوق الصوتية

- 1.2.أ-الموجة المرسلة تمثل التخطيط رقم 2.
- الموجة المستقبلة تمثل التخطيط رقم 1.


1.2-ب- المدة ∆t:

$$\Delta t = t_2 - t_1 = 7.2 - 5.4 \Leftrightarrow \Delta t = 1.8 \text{ ms}$$

2.2-سرعة الانتشار:

$$V = \frac{d}{\Delta t} = \frac{2D}{\Delta t}$$

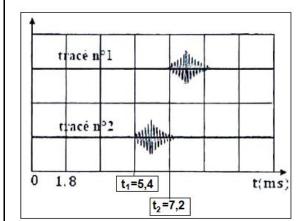
$$V = \frac{2 \times 30.10^{-2}}{1.8.10^{-3}} \Leftrightarrow V = 333,3 \text{ m. s}^{-1}$$

1.3-قيمة التردد N:

حسب المبيان جانيه قيمة الدور T هي:

$$T = S_H. x = 0.1 \text{ ms/div} \times 5 \text{ div} = 0.5 \text{ ms}$$

$$N = \frac{1}{T} \implies N = \frac{1}{0.5 \cdot 10^{-3}} = 2000 \text{ Hz} \iff \boxed{N = 2kHz}$$


: λ قىمة 1.2.3

الموجتان توجدان على توافق في الطور للمرة الثالثة نكتب:

$$d = 3\lambda \implies \lambda = \frac{d}{3} \implies \lambda = \frac{51}{3} = 17 \text{ cm} \iff \lambda = 0.17 \text{ m}$$

2.2.3-سرعة الانتشار:

$$V = \lambda$$
. N $\Rightarrow V = 17.10^{-2} \times 2000 \Rightarrow V = 340 \text{ m. s}^{-1}$

1-الجواب بصحيح او خطأ

A - خطأ

B - صحیح

C - خطأ

D - صحیح

 $B: {}^{137}_{55}Cs$ قيمة طاقة الربط ل-2

$$E_L = \left[55 \text{ m}_p + (137 - 55) \text{m}_n - \text{m}(^{137}_{55}\text{Cs})\right]. c^2 = 51605,47 + 77044,48 - 127522,35 = 1127,6 \text{ MeV}$$

$$E_L(^{137}_{55}\text{Cs}) = 1,13.10^3 \text{ MeV}$$

1.3-النشاط الاشعاعي يكتب: B

$$a=a_0.\,e^{-\lambda.t} \implies lna=ln\big(a_0e^{-\lambda.t}\big) \Longrightarrow lna=lna_0+ln\,e^{-\lambda.t} \Longrightarrow lna=lna_0-\lambda.\,t$$

2.3-التحديد المبياني ل:

: λ قيمة 1.2.3

lna = Kt + b:معادلة المنحنى lna = f(t) تكتب على الشكل حيث K المعامل الموجه

$$K = \frac{\ln a_2 - \ln a_1}{t_2 - t_1} = \frac{20,2 - 15,15}{(0 - 160) \text{ans}} = -0,03156 \text{ an}^{-1}$$

lna = Kt + b و $lna = lna_0 - \lambda.t$ بمقارنة التعبيرين:

$$K = -\lambda \implies \lambda = -K$$

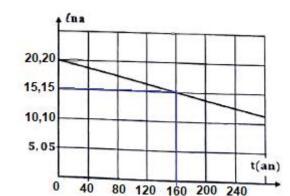
نكتب:

$$\lambda = 0.03156 \text{ an}^{-1} \iff \lambda \approx 3.2.10^{-2} \text{ an}^{-1}$$

-قيمة النشاط a₀

حسب المنحنى t = 0 عند t = 0 لدينا:

$$lna_0 = 20.2 \implies a_0 = e^{20.2} \implies \boxed{a_0 = 5.93.10^8 \text{ Bq}}$$


2.2.3-العينة سوف تكون غير صالحة للاستعمال انطلاقا من السنة: A

$$a < 20\% a_0 \implies a_0. e^{-\lambda.t} < 0.2 a_0 \implies e^{-\lambda.t} < 0.2 \implies -\lambda.t < \ln(0.2) \implies t > -\frac{\ln(0.2)}{\lambda}$$

$$t > -\frac{\ln(0,2)}{0,03156} = 50,996 \text{ ans } \approx 51 \text{ ans}$$

2021 + 51 = 2052 العينة سوف تكون غير صالحة للاستعمال انطلاقا من السنة: 2052 = 51 + 51

الجزء 1: استجابة ثنائي القطب RL لرتبة توتر

1-المعادلة التفاضلية:

$$\mathbf{u}_{\mathrm{L}} + \mathbf{u}_{\mathrm{R}} = \mathbf{E}$$
 : حسب قانون إضافية التوترات

$$\begin{cases} u_{L} = L \cdot \frac{di}{dt} + r \cdot i \\ u_{R} = R \cdot i \end{cases}$$

$$\frac{di}{dt} + \frac{R+r}{L}, i = \frac{E}{L}$$

 $60 \frac{\frac{di}{dt}(A.s^4)}{}$

0,12

45 30

15

الشكل 2

2-التحقق من قيمة L

(1)
$$\frac{di}{dt} = -\frac{R+r}{L}.i + \frac{E}{L}$$
 :المعادلة التفاضلية تكتب

(2)
$$\frac{di}{dt} = K.t + b$$
 تكتب: $\frac{di}{dt} = f(i)$ معادلة المنحنى

$$K = -\frac{R+r}{L}$$
 و $\mathbf{b} = \frac{E}{L}$: نكتب (2) بمقارنة المعادلتين (1) و (2)

 $b = 60 \text{ A. s}^{-1}$ يمثل الارتوب عند الأصل مبيانيا قيمته: b

$$b = \frac{E}{L} \implies L = \frac{E}{b} \implies L = \frac{12}{60} \implies \boxed{L = 0.2 \text{ H}}$$

K المعامل الموجه للمنحنى:

$$K = \frac{\left(\frac{di}{dt}\right)_2 - \left(\frac{di}{dt}\right)_1}{i_2 - i_1} = \frac{(60 - 30)A. \, s^{-1}}{(0 - 0.12)A} = -250 \, s^{-1}$$

$$K = -\frac{R+r}{L} \implies R+r = -K.L \implies r = -K.L-R$$

$$r = -(-250).0, 2 - 42 \Longrightarrow \boxed{r = 8\Omega}$$

: حساب 3

$$\tau = \frac{L}{R+r} \implies \tau = \frac{0.2}{42+8} = 4.10^{-3} \text{ s} \implies \boxed{\tau = 4 \text{ ms}}$$

4-في النظام الدائم قيمة كل من:

4-أ- شدة التيار ₀4

$$i=I_0=cte \implies rac{di}{dt}=rac{dI_0}{dt}=0$$
 : شدة التيار في النظام الدائم تكتب

$$\frac{R+r}{L}$$
. $I_0 = \frac{E}{L} \implies (R+r)I_0 = E$: تكتب (1) المعادلة التفاضلية

$$I_0 = \frac{E}{R + r} \implies I_0 = \frac{12}{42 + 8} \iff \boxed{I_0 = 0.24 \text{ A}}$$

الطريقة الثانية:

 $I_0=0.24\,\mathrm{A}$: أي $i=I_0=240\,\mathrm{ms}$: مبيانيا عندما يكون $\frac{\mathrm{di}}{\mathrm{dt}}=0$ شدة التيار تكون

$: u_L$ ب-قيمة التوتر-4

 $\mathbf{u_L} = \mathbf{L}.\frac{\mathrm{di}}{\mathrm{dt}} + \mathrm{r.i}$:التوتر بين مربطي الوشيعة يكتب

 $\mathbf{u_L} = \mathbf{r}.\,\mathbf{I_0} \quad \Longleftrightarrow \quad \mathbf{u_L} = \mathbf{L}.\,rac{\mathrm{di}}{\mathrm{dt}} + \mathbf{r}.\,\mathbf{I_0}$ في النظام الدائم نكتب:

$$\mathbf{u_L} = 8 \times 0.24 \Longrightarrow \boxed{\mathbf{u_L} = 1.92 \text{ V}}$$
 :ق.ع:

الجزء 2: دراسة الدارة RLC متوالية

1-تفسير شكل المنحنى من منظور طاقى:

تناقص وسع التوتر (u_c(t مع مرور الزمن، يدل على تناقص الطاقة الكلية للدارة تدريجيا بسبب مفعول جول عند كل تبادل طاقي بين المكثف والوشيعة. ويعزى هذا التناقص إلى وجود المقاومة.

$: C = 0.2 \, \mu$ F التوصل إلى -2

$$T_0 = 2\pi\sqrt{L.C} \implies T_0^2 = 4\pi^2L.C \implies C = \frac{T_0^2}{4\pi^2L}$$

 $T_0 \approx T$

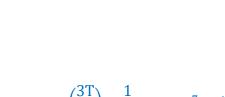
T = 1,25 ms مبيانيا قيمة شبه الدور هي:

$$C = \frac{(1,25.10^{-3})^2}{4\pi^2 \times 0.2} = 1,98.10^{-7} \text{ F} \implies \boxed{C \approx 0.2 \text{ } \mu\text{F}}$$

: $t = \frac{3T}{2}$ عند E_m و E_e عند -3

$$E_{\rm e} = \frac{1}{2} C u_{\rm C}^2(t)$$

$$u_{\rm C}\left(\frac{3T}{2}\right) = -3 \text{ V}$$


مبيانيا:

$$E_{e}\left(\frac{3T}{2}\right) = \frac{1}{2} \times 2.10^{-7} \times (-3)^{2} = 9.10^{-7} \text{ J} \implies E_{e}\left(\frac{3T}{2}\right) = 0.9 \text{ } \mu\text{F} \iff \boxed{E_{e}\left(\frac{3T}{2}\right) = 9.10^{-7} \text{ J}}$$

 $E_{\mathrm{m}}\left(rac{\mathrm{3T}}{\mathrm{2}}
ight)=0$: وبالتالي دنوي وبالتالي الطاقة E_{e} قصوية ومنه فإن $\mathrm{i}=0$ وبالتالي u_{C}

4-صيانة التذبذبات الكهربائية في دارة:

تمكن صيانة التذبذبات دارة RLC من الحصول على نظام دوري جيبي، باستعمال مولد الصيانة الذي يزود الدارة بطاقة تعوض الطاقة المبددة بمفعول جول.

 $u_{\mathcal{C}}\left(\frac{3T}{2}\right) = -3$